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Previous research has demonstrated that biological
motion (BM) cues can induce reflexive attentional
orienting. This BM-triggered social attention has
hitherto only been investigated within visual modality. It
remains unknown whether and to what extent social
attention induced by BM cues can occur across different
sensory modalities. By introducing auditory stimuli to a
modified central cueing paradigm, we showed that
observers responded significantly faster to auditory
targets presented in the walking direction of BM than in
the opposite direction, reflecting the notion that BM

cues can trigger cross-modal social attention. This effect
was not due to the viewpoint effect of the global
configuration and could be extended to local BM cues
without any global configuration. Critically, such
cross-modal social attention was sensitive to the
orientation of BM cues and completely disappeared
when critical biological characteristics were removed.
Our findings, taken together, support the existence of a
special multimodal attention mechanism tuned to life
motion signals and shed new light on the unique and
cross-modal nature of social attention.
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Introduction

Humans appear to be endowed with the ability to
readily compute the whereabouts of others’ focus of
interest via social cues (e.g., eye gaze) and use this
information accordingly to change their own attentional
behaviors (Birmingham & Kingstone, 2009; Frischen,
Bayliss, & Tipper, 2007; Nummenmaa & Calder,
2009). This fundamental social attention ability is of
prime importance for social interactions and adaptive
functioning, as it enables humans to learn about other
people’s mental states (e.g., intentions, goals) and where
the object of interest (e.g., food) is in the surrounding
environment (Klein, Shepherd, & Platt, 2009). Such
ability is an important precursor to language acquisition
and theory-of-mind development (Baron-Cohen, 1995;
R. Brooks & Meltzoff, 2005; Nuku & Bekkering,
2008; Shepherd, 2010). A modified central cueing task
that is simple and well established has been widely
used for simulating and measuring social attention
(Friesen & Kingstone, 1998; Frischen, Bayliss, et
al., 2007; Mathews, Fox, Yiend, & Calder, 2003).
Typically, a nonpredictive eye gaze cue is presented
centrally, and it will trigger a reflexive attentional
orienting as evidenced by more rapid responses to
targets appearing in a location congruent with the
direction of the eye gaze than those in the opposite
location (i.e., gaze cueing effect). This effect arises
very rapidly (as early as 100 ms after the appearance
of the gaze stimulus) and occurs even when eye gaze
direction is counter-predictive of target location,
thus disclosing its reflexive nature (Driver, Davis,
Ricciardelli, Kidd, Maxwell, & Baron-Cohen, 1999;
Friesen, Ristic, & Kingstone, 2004; Tipples, 2008). In
this respect, social attention resembles the well-known
exogenous attention that uses spatially uninformative
cues to investigate the reflexive response of attention
(Posner, 1980). However, unlike exogenous attention,
social attention is not caused by the peripherally
presented cue, and its inhibition of return effect is
quite delayed (Frischen, Smilek, Eastwood, & Tipper,
2007). On the other hand, although social cues appear
in the central location like traditional endogenous
cues (Posner, 1980), the direction of social cues is not
predictive of the probable location of the subsequent
target, thus distinguishing social attention from
endogenous attention. Given these special properties,
this type of reflexive attentional orienting challenges
the traditional dichotomous categorization of covert
attention and opens up new avenues for visual attention
research.

In everyday life, eyes are not the unique source of
information regarding others’ focus of attention. The
movements of biological organisms can also be used to
identify the source of interest of a peer when the eyes
are not visible (J. Thompson & Parasuraman, 2012).

Biological motion (BM), even depicted solely by several
moving point-light dots attached to the major joints,
suffices to provide quite rich meaningful information
of biological and social relevance, such as gender (A.
Brooks, Schouten, Troje, Verfaillie, Blanke, & van der
Zwan, 2008), emotion (K. L. Johnson, McKay, &
Pollick, 2011), intention (Manera, Schouten, Becchio,
Bara, & Verfaillie, 2010), and so forth. Among them,
walking direction is an especially important attribute
of BM, as it conveys the disposition and goals of a
biological entity. BM perception is therefore commonly
considered to be a hallmark of social cognition
(Pavlova, 2012) and appears to be compromised in
individuals with social cognitive deficits (e.g., autism)
(Klin, Lin, Gorrindo, Ramsay, & Jones, 2009).

Humans and a wide range of non-human species
(e.g., chicks, monkeys) have evolved to be highly
sensitive to the direction of BM (Di Giorgio,
Loveland, Mayer, Rosa-Salva, Versace, & Vallortigara,
2017; Oram & Perrett, 1994; Rosa Salva, Mayer, &
Vallortigara, 2015; Simion, Regolin, & Bulf, 2008;
Sweeny, Wurnitsch, Gopnik, & Whitney, 2013; B.
Thompson, Hansen, Hess, & Troje, 2007). For example,
observers are able to discriminate the direction of a
point-light walker even when it is masked by moving
random dots (Bertenthal & Pinto, 1994). Moreover,
this ability emerges very early in life (6-month-old
infant) (Kuhlmeier, Troje, & Lee, 2010). Importantly,
such intrinsic sensitivity to the direction of BM can
further affect our attentional behaviors. A previous
study has demonstrated that the walking direction of
BM cues can trigger a reflexive orienting effect (Shi,
Weng, He, & Jiang, 2010). This attentional effect can
also be observed in preschool children and 6-month-old
infants (Bardi, Di Giorgio, Lunghi, Troje, & Simion,
2015; Zhao, Wang, Wang, Weng, Li, & Jiang, 2014).
Such BM-induced attentional orienting effect persists
even when the global configuration of BM is disrupted
and observers are naïve to its biological nature (L.
Wang, Yang, Shi, & Jiang, 2014). Our recent study has
further demonstrated that this social attention ability
is highly heritable and hardwired in the human visual
system (L. Wang et al., 2020), which is also in line with
the findings from other species (Di Giorgio et al., 2017;
Rosa Salva et al., 2015; Vallortigara & Regolin, 2006;
Vallortigara, Regolin, & Marconato, 2005). Moreover,
the attentional orienting effects triggered by BM and
eye gaze cues share common genetic bases and neural
mechanisms (Ji, Wang, & Jiang, 2020; L. Wang et al.,
2020), which implies the existence of a “social attention
detector” in the human brain.

Previous investigations into BM-triggered attention
have specifically focused on one sense modality (i.e.,
vision). In other words, all of these studies employed
the unimodal cueing task, in which visually presented
BM cues facilitated the detection of visual targets.
In the real world, however, the environment is much
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more complex, and we constantly have to cope with
sensory inputs belonging to different modalities. From
an evolutionary perspective, it is essential to detect the
occurrence of important events (e.g., food, danger)
through non-visual modalities (e.g., audition), especially
when such signals are out of sight or obscured.
Therefore, it would be of great interest to investigate
social attention induced by BM cues under cross-modal
conditions. Until recently, the multisensory modulatory
effects, particularly the modulation of auditory cues
on visual BM, have become a focus on research into
BM perception. It has been demonstrated that auditory
cues can affect visual BM processing (e.g., direction,
gender) (Arrighi, Marini, & Burr, 2009; A. Brooks, van
der Zwan, Billard, Petreska, Clarke, & Blanke, 2007;
Mendonca, Santos, & Lopez-Moliner, 2011; Schouten,
Troje, Vroomen, & Verfaillie, 2011; Thomas & Shiffrar,
2010; van der Zwan, MacHatch, Kozlowski, Troje,
Blanke, & Brooks, 2009; Wuerger, Crocker-Buque,
& Meyer, 2012). For example, direction-matched
auditory motion enhanced the direction discrimination
performance of visually presented BM, whereas
auditory motion in the opposite direction impeded
the detection (A. Brooks et al., 2007). Moreover,
auditory cues could also bias the gender perception of
ambiguous BM. Specifically, female auditory cues made
gender-ambiguous BM look more feminine (van der
Zwan et al., 2009). However, it remains unclear whether
visual BM cues can modulate attention to auditory
information.

To probe this issue, the present study investigated
whether the walking direction of BM could modulate
auditory attention by using auditory targets in a
modified central cueing paradigm. Similar to the
previous cross-modal gaze cueing study (Newport &
Howarth, 2009), we manipulated the BM stimulus as
either walking toward left or right as a central cue,
followed by a lateralized tone that was presented from
headphones and served as the target. Participants
were required to perform a sound localization task
immediately after viewing the central BM cue. In
addition to intact BM cues, the current study also
employed feet motion sequences as central cues to
investigate whether such cross-modal BM-triggered
attention, if observed, could extend to local BM cues
without global configuration.

Methods

Participants

Ninety-six participants (54 females) who between the
ages of 18 and 35 years (M ± SD = 24.3 ± 4.0 years)
were recruited in four experiments. Twenty-four (13
females) participated in Experiment 1, 24 (14 females)

in Experiment 2, 24 (14 females) in Experiment 3,
and the remaining 24 (13 females) in Experiment 4.
All participants had normal or corrected-to-normal
vision and normal hearing and gave written informed
consent in accordance with procedures and protocols
approved by the institutional review board of
the Institute of Psychology, Chinese Academy of
Sciences. They were all naïve to the purpose of the
experiments.

Stimuli and procedure

Stimuli were generated and displayed using
MATLAB (MathWorks, Natick, MA) together with
the Psychophysics Toolbox extensions (Brainard, 1997;
Pelli, 1997) on a 19-inch cathode-ray tube monitor
(1280 × 1024 at 60 Hz). BM stimuli with leftward
or rightward walking direction, depicted by 13 white
point-light dots that represented the motions of the
head and the major joints (shoulders, elbows, wrists,
hips, knees, and ankles) of a walker, were adopted
from Vanrie and Verfaillie (2004). Each cycle was
1 second and contained 30 frames. In each trial, to
avoid observers’ prediction, the initial frame of the
point-light display was randomized. Static BM frames
were created by capturing the most extended points
of a gait cycle from the BM stimuli. Nonbiological
motion sequences were derived from the fragments
identical to the BM stimuli but with critical biological
characteristics removed. Specifically, each individual
dot moved along a path identical to that of the BM
stimuli but with a constant speed equal to the average
speed of all the dots. In addition, the initial motion
phase of each individual dot was also randomized.
Such manipulations disrupted the natural velocity
profile and phase relationship of the BM stimuli but
kept the motion trajectories of individual point lights
unchanged. The feet motion sequences that served as
local BM cues were created by isolating the two point
lights of ankles from the original BM sequences. They
consisted of two fragments representing the stance
phase and swing phase of the foot trajectory. During
the stance phase, the corresponding dot moved in
the opposite direction of the walking direction at an
approximately constant velocity. During the swing
phase, the dot accelerated along both the horizontal
and vertical dimensions due to muscle activity and
gravitational acceleration. Note that the intact BM cues
contained both global configuration information (i.e.,
skeletal structure) and local motion information (i.e.,
trajectories of individual dots), whereas the local BM
cues were devoid of configural cues and retained local
motion signals only. Inverted counterparts were created
by mirror flipping the motion sequences (i.e., BM and
feet motion sequences) vertically such that the walking
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Figure 1. Static frames of sample stimuli used in Experiments 1 to 4 and schematic representation of the experimental paradigm. In
Experiment 1, a point-light walker (upright or inverted) was presented as a central cue for 500 ms in each trial. After a 200-ms ISI,
participants were required to indicate the location (left or right) of a briefly presented (150 ms) auditory probe. Experiments 2 to 4
followed a similar procedure, with the exception that the central cues were static BM frames in Experiment 2, nonbiological motion
sequences in Experiment 3, and feet motion sequences (upright and inverted) in Experiment 4. At the beginning of each experiment,
participants were explicitly told that the cue direction did not predict the probe location.

direction was kept the same for the upright and inverted
versions.

In Experiment 1, all stimuli were presented within
a white frame (17.5° × 17.5°) on a gray background
(RGB: 128, 128, 128), and the viewing distance was
about 57 cm. Each trial began with a white cross
(0.6° × 0.6°) displayed in the center of the screen on
which participants were asked to fixate throughout
the experiment. After 1000 ms, an upright or inverted
BM sequence (subtended approximately 3.5° × 6.0° in
visual angle) appeared as a central cue for 500 ms. After
a 200-ms interstimulus interval (ISI) in which only the
fixation was displayed, a pure tone was presented briefly
(150 ms) as a probe to the left or right ear through the
headphone. Participants were required to indicate the
location (left or right) of the auditory probe as quickly
and accurately as possible by pressing the left or right
arrow key, respectively, on the keyboard (Figure 1).
At the beginning of the experiment, participants were

explicitly told that the cue direction did not predict the
probe location. There were two blocks, the upright BM
stimulus block and the inverted BM stimulus block.
Each block consisted of 80 trials with 40 congruent
trials (the probe location was the same as the cued
direction) and 40 incongruent trials (the probe location
was opposite to the cued direction). Test trials were
presented in a new random order for each participant.
The order of the blocks (upright and inverted) was also
counterbalanced across participants. Experiments 2 and
3 followed a procedure similar to that in the upright
BM stimulus block of Experiment 1, except that static
BM frames and nonbiological motion sequences were
employed as central cues. Experiment 4 was identical
to Experiment 1, with the exception that feet motion
sequences (upright and inverted) were used as cues. In
addition, participants were informed of the biological
nature of upright and inverted feet motion sequences
before the experiment began.
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Figure 2. Results from Experiments 1 to 4. In Experiment 1, a cross-modal attentional effect was observed with the upright but not the
inverted BM cues. Such an effect vanished in Experiment 2 (static BM frames) and Experiment 3 (nonbiological motion sequences).
Furthermore, the observed cross-modal attentional effect could be extended to feet motion sequences (Experiment 4), which was
also sensitive to the orientation of the feet motion cues. Error bars show standard errors. ***p < 0.001; **p < 0.01.

Results

In all four experiments, trials with incorrect responses
and reaction times (RTs) less than 100 ms or greater
than 1500 ms were excluded from the statistical analysis
(1.0% of all trials). Mean RTs from Experiments 1
through 4 are shown in Figure 2.

In Experiment 1, data for the mean RTs were entered
into a 2 × 2 repeated-measures analysis of variance
(ANOVA) with the two within-subjects factors of
cue–probe congruency (congruent vs. incongruent) and
BM orientation (upright vs. inverted). Results revealed
a significant interaction between cue–probe congruency
and BM orientation, F(1, 23) = 9.300, p = 0.006, ηp

2

= 0.288. Specifically, when upright point-light BM
sequences were presented as central cues, a paired
t-test showed that participants responded significantly
faster to auditory targets presented in the congruent
trials than those in the incongruent trials—391.1 ms
vs. 412.3 ms; 95% confidence interval (CI) for mean
difference, 10.3–32.0; t(23) = 4.044; p < 0.001; Cohen’s
d = 0.825; Bayes factor (BF)10 = 127.979—even when
they were explicitly told that the walking direction
of BM did not predict the location of the auditory
targets. This cross-modal attentional effect, however,
disappeared when inverted point-light walkers were
used as central cues—391.6 ms vs. 391.1 ms; 95% CI
for mean difference, –9.4 to 8.2; t(23) = –0.139; p =
0.891; Cohen’s d = 0.028; BF10 = 0.194—consistent
with previous observations from unimodal studies
(Bardi et al., 2015; Shi et al., 2010). In other words, the
attentional orienting triggered by nonpredictive BM
cues extended beyond the modality of vision to that of
audition and critically depended on the orientation of
the BM cues.

To rule out the possibility that the observed
cross-modal attentional orienting effect was contributed
by the viewpoint information of the point-light
figures (e.g., a point-light figure facing left or right)
rather than the walking direction information of
BM, we employed static point-light figures as central
cues in Experiment 2. A paired t-test revealed no
significant difference in RTs between auditory probes
presented in the facing direction and those in the
opposite direction—392.2 ms vs. 393.9 ms; 95% CI
for mean difference, –9.0 to 12.4; t(23) = 0.320; p =
0.752; Cohen’s d = 0.065; BF10 = 0.278—indicating
that static frames with a discernable human figure
could not produce cross-modal attentional orienting.
Furthermore, to examine if the observed cross-modal
attentional effect was indeed triggered by the biological
characteristics of the BM signals, we conducted an
additional control experiment (Experiment 3) in which
nonbiological motion sequences were used as central
cues. Again, results showed that the difference between
the congruent and the incongruent conditions obtained
from upright BM stimuli disappeared—404.4 ms vs.
401.6 ms; 95% CI for mean difference, –10.0 to 4.5;
t(23) = –0.786; p = 0.440; Cohen’s d = 0.160; BF10 =
0.131—indicating that nonbiological motion sequences,
although sharing identical moving trajectories with
BM stimuli, could not elicit cross-modal attentional
orienting. Collectively, these findings demonstrate
that the observed cross-modal attentional effect was
essentially triggered by the biological characteristics
contained in the motion rather than the form signals.

To further probe the dependence of the observed
cross-modal attentional effect on the global
configuration of BM signals, we adopted feet motion
sequences in Experiment 4. The feet motion sequences
consisted of only the two point lights of the ankles
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representing the walkers’ feet, which obviously had
no global configuration. Similar to Experiment 1, a
significant interaction of congruency (congruent vs.
incongruent) and feet motion orientation (upright vs.
inverted) was found, F(1, 23) = 15.631, p = 0.001, ηp

2

= 0.405. Further analyses revealed that participants
performed better in the congruent condition than in the
incongruent condition when upright feet motion cues
were presented, 359.2 ms vs. 381.6 ms; 95% CI for mean
difference, 7.9–36.9; t(23) = 3.209; p = 0.004; Cohen’s
d = 0.655; BF10 = 21.512. Moreover, the magnitude
of the cross-modal attentional effect induced by feet
motion cues (calculated using the difference in the
mean RT obtained under the incongruent condition
vs. that under the congruent condition divided by
their sum, RTincongruent − RTcongruent

RTincongruent + RTcongruent
) was not different from

that induced by intact BM cues, t(46) = –0.241, p =
0.811, Cohen’s d = 0.070, BF10 = 0.294. These results
suggest that the cross-modal attentional effect did
not necessarily rely on the global configuration and
could be induced by the local motion signals alone.
Intriguingly, when the feet motion cues were shown
inverted, the attentional effect was also significant but
revealed a reverse pattern—385.4 ms vs. 364.0 ms; 95%
CI for mean difference, –35.0 to –7.9; t(23) = –3.278;
p = 0.003; Cohen’s d = 0.669; BF10 = 24.812—which
is in line with our previous unimodal study (L. Wang
et al., 2014). That is, the performance of the observers
was worse when the probe was presented in the motion
direction of the inverted feet motion cues (congruent
condition) than in the opposite direction (incongruent
condition). This pattern of result seems to arise from
the translatory (extrinsic) motion in the stance phase
that essentially points to the opposite direction of the
walking direction (see Methods for more detail). It
should be noted that the inversion of the feet motion
cues disrupted only the intrinsic biological information
contained in the upright feet motion cues (e.g., vertical
acceleration due to muscle activity and gravity), whereas
the horizontal, translatory motion in the stance phase
remained unchanged. In other words, the attentional
effect induced by the walking direction of the upright
feet motion cues overrode the effect from the translatory
motion (which was opposite to the walking direction).
Taken together, these findings demonstrated that the
walking direction carried by the motion of feet was
effective at triggering a cross-modal attentional effect.

Discussion

Humans live in an interconnected world and always
need to share attention with interactive social partners
in order to better detect objects or events from different
modalities. It is therefore necessary to investigate the

effect of social attention in a multisensory setting
that is more representative of our daily life. Here,
we examined social attention induced by BM cues
under visual–auditory cross-modal conditions and
found that BM cues could trigger auditory attentional
orienting. The observed cross-modal social attention
appeared to vanish when the BM cues were shown
upside-down, reflecting an inversion effect associated
with BM processing (Chang & Troje, 2009; Troje &
Westhoff, 2006). Moreover, the effect was not due to
the viewpoint effect of the biological figure, as a static
point-light human figure showed no such attentional
effect. Critically, such an effect completely disappeared
when critical biological characteristics were removed.
Furthermore, local BM cues, which consisted of only
the two point lights of the ankles and had no global
configuration, could produce similar cross-modal
attentional orienting, and this effect was also sensitive
to the orientation of the local cues. Together, these
findings demonstrate a cross-modal attentional effect
driven by biological characteristics embedded in the
motion signals independent of global configuration.

The focus in the research on BM processing has
traditionally been limited to the visual modality. Given
the ubiquity of multisensory information in real life,
it is not surprising that multisensory research has
captured the attention of scientists from the research
field of BM in recent years. For example, it was found
that auditory motion in the same direction as the BM
target could facilitate its detectability (A. Brooks et al.,
2007). Moreover, auditory cues affected the extraction
of high-level features (e.g., gender) from BM displays
(van der Zwan et al., 2009). Here, we went a step further
by employing auditory stimuli in a social attention
task and demonstrated that visual BM displays could
conversely modulate attention to auditory cues. It
should be noted that there is a spatial mismatch
between visual and auditory signals in the cross-modal
social attention task. In the future, it will be important
to investigate the influences of spatial mismatch on
multisensory interactions of BM (Harrison, Wuerger,
& Meyer, 2010).

On the other hand, our findings extended prior
unimodal social attention studies and showed that
BM-triggered attention could span to another sensory
modality (i.e., audition). A similar cross-modal social
attention has been observed with another type of social
cue (i.e., eye gaze) (Doruk, Chanes, Malavera, Merabet,
Valero-Cabre, & Fregni, 2018; Newport & Howarth,
2009; Pines & Bekkering, 2010; Soto-Faraco, Sinnett,
Alsius, & Kingstone, 2005). It has been demonstrated
that gaze cues can induce shifts in auditory or tactile
attention (Newport & Howarth, 2009; Soto-Faraco et
al., 2005). Exogenous attention caused by the visual
peripheral nonsocial cue has also been investigated
in a similar cross-modal paradigm. For example,
several studies have reported that uninformative visual
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peripheral cues cannot trigger attentional orienting
to auditory targets (Buchtel & Butter, 1988; Spence
& Driver, 1997). Combined with previous evidence,
our findings obtained here reflect the specificity and
cross-modal nature of social attention.

Notably, such cross-modal social attention could
be extended to local BM stimuli without any global
configuration. The important role of local motion in
BM perception has long been overlooked, but recently
some researchers investigated its ecological and social
significance by adopting novel stimuli (e.g., only the
two point lights of the ankles representing the feet) that
were entirely devoid of configural cues and retained
only local motion signals (Troje & Westhoff, 2006; L.
Wang & Jiang, 2012; L. Wang, Zhang, He, & Jiang,
2010; L. Wang et al., 2014; Y. Wang et al., 2018). These
studies have emphasized the special role of the motion
of the feet in the perception of BM walking direction
(Chang & Troje, 2009; Gurnsey, Roddy, & Troje, 2010;
M. H. Johnson, 2006; Saunders, Suchan, & Troje,
2009; Troje & Westhoff, 2006). Moreover, it has been
shown that feet motion cues not only can be processed
independent of global configuration but also can trigger
reflexive attentional effect even without an observer’s
explicit awareness of the biological nature of the motion
(L. Wang et al., 2014). It has hence been suggested
that there might exist a specialized and intrinsic brain
mechanism sensitive to the direction of the limbs of
another moving creature (i.e., life motion detector)
(Troje & Westhoff, 2006; L. Wang & Jiang, 2012; L.
Wang et al., 2014). However, all of these previous
studies explored local BM processing exclusively within
a unimodal visual setting. In the present study, we first
examined the processing of feet motion cues under a
visual–auditory cross-modal condition and showed that
local BM cues could be effective at triggering shifts
in auditory attention. Our findings provide evidence
for the automatic processing of local BM cues from a
multisensory perspective and suggest the existence of a
dedicated multimodal mechanism subserving local BM
processing.

It is worth noting that the present study does not
allow determining whether the cross-modal social
attention is driven by facilitated attentional engagement
or by delayed disengagement. By comparing reaction
times to the averted (congruent or incongruent) and
direct (neutral) gaze condition, a previous unimodal
study demonstrated that gaze-triggered social attention
resulted from enhanced engagement rather than
delayed disengagement (Friesen & Kingstone, 1998).
In addition, a cross-modal exogenous attention study
showed that the emotional valence of the peripheral
visual cues could modulate the roles of engagement and
disengagement components in the auditory attention
(Harrison & Woodhouse, 2016). Future research
should include a neutral cue (e.g., a point-light walker
facing toward the viewer) to investigate whether the

cross-modal cueing effect obtained in the present
study was due to facilitated engagement or delayed
disengagement.

With regard to the underlying neural mechanisms,
brain regions that have been previously implicated
in BM perception, attentional orienting, and
multisensory processing are likely involved in the
obtained cross-modal social attention triggered by
BM. Transcranial magnetic stimulation (Grossman,
Battelli, & Pascual-Leone, 2005) and functional
magnetic resonance imaging (Grossman & Blake,
2001; Grossman, Donnelly, Price, Pickens, Morgan,
Neighbor, & Blake, 2000) studies have consistently
shown that the superior temporal sulcus (STS), which
plays a crucial role in understanding intentions and
goals (Gobbini, Koralek, Bryan, Montgomery, &
Haxby, 2007), is central to BM perception (Puce &
Perrett, 2003). In addition, BM task performance
(walking direction discrimination) is associated with
activity in the bilateral STS (Herrington, Nymberg,
& Schultz, 2011). Particularly, this area is proposed
to subserve the reflexive shift of attention induced by
biological signals (e.g., gaze and BM) in unimodal
studies (Kingstone, Friesen, & Gazzaniga, 2000; L.
Wang et al., 2014). Note that the STS also plays a crucial
role in multisensory processing (Calvert, 2001) and,
more specifically, the combined processing of visual
and auditory BM signals (Meyer, Greenlee, & Wuerger,
2011; Meyer, Harrison, & Wuerger, 2013). Therefore,
it is reasonable to expect that the STS is critically
involved in the cross-modal orienting effect observed in
our study; however, the specific neural network behind
BM-mediated cross-modal social attention remains an
important question worthy of further investigation.

In conclusion, the current study clearly demonstrates
that BM signals independent of global configuration
have consequences that reach beyond their own sensory
modality, enhancing related auditory information
processing. These findings lend strong support for the
existence of a supramodal attention mechanism that
is specifically tuned to life motion signals. Life motion
signals may inform us about the potential presence of
a nearby event (e.g., food) that is out of sight and thus
synchronize our perceptions of the complex world.

Keywords: biological motion, cross-modal attention,
social attention, vision, audition
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