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Abstract  A novel data processing procedure for fMRI was suggested in this paper, by 
which spatial and temporal characteristics of stimuli-induced signal dynamic responses 
can be investigated simultaneously. First the multitaper spectral estimation was utilized to 
estimate the spectrum of each voxel; the significance of the line frequency components at 
the interested frequency was tested to detect the task-related cortex areas; the temporal 
independent component analysis (tICA) was then applied to the activated voxels to obtain 
stimuli-induced signal dynamic responses. The advantages of this procedure are: few 
assumptions are needed for the cerebral hemodynamics and spatial distribution of 
task-related areas, problems which often appear in tICA analysis of fMRI data, such as 
the lack of stability, reliability and robustness, are overcome by the suggested method. 
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1  Introduction 

Functional magnetic resonance imaging (fMRI) is a non-invasive brain imaging 
technique which has been utilized in brain function researches since the early 1990s[1]. 
However, it is often difficult to do analysis in fMRI data because of the low signal to 
noise ratio (SNR) (about 2%—4% with 1.5T magnetic field strength) and the delay 
within the true neural activity and the stimuli-induced signal dynamic responses. 

The prevalent methods applied to fMRI data could be divided into two main cate-
gories: the hypothesis-driven techniques (such as statistical parameter mapping[2,3], cor-
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relation analysis, univariable t-test, etc.) and the data-driven techniques (such as inde-
pendent component analysis, principal component analysis, etc.). When the former tech-
niques are utilized, the model of the stimuli-induced signal responses must be specified 
and the results are usually highly related to the satisfaction to these assumptions. The 
assumptions about neural system model are not needed in data-driven multivariable sta-
tistical techniques, which utilize the statistical information of the data and are more 
adaptive and powerful than the model-driven techniques. Among data-driven techniques, 
independent component analysis (ICA), first suggested by Jutten and Hérault et al.[4], is 
a promising one. In applications ICA can be classified into spatial independent compo-
nent analysis (sICA) and temporal independent component analysis (tICA) according to 
the assumptions about the actual physical model[5, 6]. sICA was first applied to fMRI data 
by Makeig[7] and McKeown et al.[8] and was prevalent from then on[9, 10]. sICA assumes 
that the spatial distribution of independent functional voxels in brain is sub-Gaussian 
while that of background noises is super-Gaussian. The generalizability of this assump-
tion in different cortex areas is still in dispute[11,12]. Results have indicated that task-re- 
lated cortex areas detected by sICA tend to confuse with the cortex areas where high 
density of capillaries are contained[12]. When tICA is utilized, no assumption is needed 
about the spatial distribution of functional brain areas and background noises, the 
physiological meaning of the model is clear and the results can be readily explained[5,6,10]. 
However, because of the high spatial dimension of the fMRI data, tICA algorithm is 
time-consuming, sensitive to SNR, and the convergence can hardly be assured even ap-
plied to single scan data. tICA alone as applied in brain function research is effective 
primarily in analyzing EEG data whose temporal dimension is much higher than its spa-
tial dimension. tICA has been successfully utilized in spatial-temporal pattern analysis of 
human auditory cortical EEG data by Seifritz[13] and some unexpected hemodynamic 
characteristics of the cortical responses were discovered. At present there are two pri-
mary strategies to improve the tICA as applied in fMRI data analysis: one is to select 
some areas according to the prior knowledge to enhance SNR before tICA is applied[7]. 
In the other strategy, the cerebral cortex is partitioned into spatially non-overlapped ar-
eas to which tICA is applied separately, and task-related voxels are picked out with a 
low threshold then analyzed by tICA to detect task-related cortex areas[14]. In both 
strategies task-related voxels are pre-selected locally and subjectively; thus the objectiv-
ity and reliability of the results are suspectable to some extent. Better results are ex-
pected if the task-related voxels are pre-selected more objectively from the whole cere-
bral cortex.  

This paper will suggest a novel procedure in which tICA and multitaper spectral 
analysis method (MTM) are unified to detect the spatio-temporal stimuli-induced re-
sponses of task-related brain areas reliably. The main idea of this procedure is: if the 
paradigm of fMRI experiment is block designed and some cortex areas are task-related, 
then the time courses of voxels in these areas will have a significant periodic component 
at the same frequency of task, which can be used as a criterion to pick up the task-related 
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voxels. MTM suggested by Thomson[15, 16] was successfully used to investigate the 
long-term climate change[17] in 1995, and was first applied to fMRI data by Mitra[18] in 
1999. MTM is utilized in this paper as the tool of spectrum estimation because of its 
robustness[17—19]. It can obtain the cerebral cortex activation maps and the corresponding 
significant values simultaneously. The characteristics of stimuli-induced responses can 
be obtained by applying tICA to the task-related cortex areas detected by MTM. Simu-
lated data are generated to test the validity of the procedure suggested. Eight sets of 
fMRI data are analyzed by the procedure, and the spatio-temporal stimuli-induced re-
sponses of the task-related brain areas are successfully separated.  

2  Description of procedure 

The procedure consists of three steps. The first step is preprocessing, in which 
datasets were registered to eliminate the head movement artifacts, and then spatially 
smoothed with a 5× 5× 10 mm full-width at half maximum (FWHM) Gaussian ker-
nel[2,3]. In the second step, the spectrum of each voxels’ time courses was estimated by 
MTM, and the significance of a task frequency component’s existence was tested, 
task-related cortex areas were then detected with a proper threshold. In the third step, the 
stimuli-induced responses were separated by tICA from task-related cortex areas along 
with the relative activation maps at the same time. 

Denote 0f  as the task frequency in the paradigm, T as number of scans, L as the 
number of slices, and let the resolution of each slice be M N× . The time course of 
voxel at [m, n] of the lth slice is denoted as: 

 { }, , , , , , , ,(1), (2), , ( ) 1 1 , 1 .l m n l m n l m n l m nX x x x T l L m M n N= ≤ ≤ ， ≤ ≤ ≤ ≤  (1) 
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where the tapers ( ) ( )k tν  are the kth discrete prolate spheroidal sequences (DPSS, 
which can be generated by dpss function in Matlab), the number of the tapers is taken as 

2K Tω= ⎢ ⎥⎣ ⎦ . The last taper is eliminated in practice because it has worse spectral con-

centration properties. 

If the sequences , ,l m nX  are assumed to contain a sinusoid of complex amplitude 

, ,l m nµ  at frequency, then (2) can be written as 
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1) Hu, D.W., Multiple-window statistical technique—from theory to applications, AIVRU memo, University 

of Sheffield, 1996, 15. 
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where ( )kV f  is the Fourier transform of the kth DPSS; ( )kn f  is the spectrum of 

noises, and can be assumed to be white in [ ]0 0,f fω ω− + . Thus, µ  can be estimated 

by linear regression method at 0 ,f f=  
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In order to test the significance of a line frequency component, both the absolute 
value of , , 0ˆ ( )l m n fµ  and the ratio , , 0ˆ ( )l m n fµ / ( )kn f  need to be taken into account. A 

line frequency component at frequency 0f  would be considered to exist only when the 

absolute value of , , 0ˆ ( )l m n fµ  is significant compared to that of ( ).kn f  If there is no 

more than one line frequency component in the short interval [ ]0 0,f fω ω− + , the sig-

nificance of a non-zero , , 0ˆ ( )l m n fµ can be tested by Fisher’s statistic which are written as 

follows: 
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ing at a known frequency υ is 2, degree of freedom for this F-test is ( 2 , 2 2)K − [17,18]. 
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× ×
 is a L M N× ×  matrix to which a proper threshold (the significance 

is selected as 99% in our calculation) is set to detect the task-related cortex areas. Let P 
denote the number of voxels that have passed the test, a matrix X with P T×  dimen-
sions is constructed with the rows containing the time courses of these voxels. tICA al-
gorithm is used to do analysis on X. 

As is known, a voxel’s hemodynamic signals measured by fMRI can be influenced  
by several factors such as respiration-induced and pulse-induced fluctuations, α- and  
β-rhythm, background noise and head movement artifact, etc. If a voxel belongs to a  
task-related cortex area, its hemodynamic signals also contain the stimuli-induced signal  
responses. It has been suggested that physiological noise is the dominant factor in fMRI  
studies[20]. Signal sources of all the factors can be effectively separated by tICA if they  
are independent of each other, referred to as 1 2{ , , , } .T

QS s s s=  If the voxels’ hemo- 

dynamic signals are assumed to be linear mixtures of independent sources, then X can be  
written as ,X AS=  where A is a P Q×  matrix modeling the linear mixture, and its  

inverse matrix, 1W A−= , is often called the unmixing matrix. In this paper tICA algo- 
rithm based on maximum likelihood estimation[21] with tanh(·) as the nonlinearity is  
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applied to X. 
By investigating the temporal architecture of each independent component, 

task-related components which reflect the characteristic of task-related cortex areas’ dy-
namic responses can be picked out. The ith column of matrix A reflects the spatial dis-
tribution of the ith independent component, elements of the column indicate how 
strongly the corresponding voxels’ hemodynamic signals are influenced by the inde-
pendent component，the relative spatial distribution maps of an independent component 
can be obtained by transforming the corresponding column of matrix A into an image. 

3  Simulated experiments 

Simulated data is generated to test the validity of the procedure. Brain BOLD signal 
of a normal subject in rest is scanned, 100 fMRI images with resolution of 64× 64 are 
collected and used as the background process. As is shown in fig. 1, two simulated acti-
vated areas (black and gray) are generated. A toothed and a square waves are added to 
the hemodynamic signals of voxels in black area, while in the gray area, only the square 
wave is added, the amplitudes of these waves are both 2% of mean baseline. 

 
Fig. 1.  Illustrative figure for simulated data generation. 

An image picked out from the simulated data is shown in fig. 2(a). The absolute 
values of estimated spectrum at the task frequency ( 0f ) calculated by (4) are used to 
form an image shown in fig. 2(b). As can be seen, the spectral values of voxels in brain 
border area are approximate with those in simulated activated area, thus the activation 
maps cannot be obtained by simply thresholding this image. The image in fig. 2(c) is 
obtained by (5), which indicates the significance of a line frequency component’s exis-
tence. Activation map shown in fig. 2(d) is obtained with significance of 99%, the acti-
vated excursion size is a little larger than the real one because the spatial resolution is 
reduced by the Gaussian smooth performed on the simulated data. 

 
Fig. 2.  Simulated data and the results. (a) is an image picked out from the simulated data, (b) is formed by the 
absolute values of estimated spectrum at the interested frequency calculated by (4), (c) is formed by the values cal-
culated by (5), (d) is the 0-1 image by thresholding (significance of 99%) (c), (e) is the relative spatial distribution 
map for square wave, and (f) is the relative spatial distribution map for toothed wave. 

When the SNR of the simulated data is 2%, the toothed and square waves separated 
by the suggested procedure are shown in fig. 3(a), and results under SNR of 4% are 
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shown in fig. 3(b). As can be seen, when the SNR is enhanced, improvement of results is 
obvious. The relative spatial distribution maps of square and toothed waves detected 
under SNR of 2% are shown in fig. 2(e) and (f). If a voxel did not pass the F-test, the 
corresponding value in the relative spatial distribution map is set to 0. The relative spa-
tial distribution map indicates not only the location of activation areas but also the 
strength of hemodynamic signal influenced by the independent component. The spatial 
distribution and temporal architecture of stimuli-induced signal responses then can be 
obtained by investigating the relative spatial distribution map and the independent com-
ponents.  

 
Fig. 3.  Square and toothed waves separated by tICA. (a) is the results when the SNR is 2%, and (b) is the results 
when the SNR is 4%. 

Simulated activation areas with the two artificial waves have been accurately de-
tected by the suggested procedure. Although the results were influenced by the noises to 
some extent, the procedure is valid and stable when the SNR is between 2%—4% which 
is usual in real fMRI data. Simulation also indicates that if there are several independent 
signal dynamic responses in the same activation area, they can still be separated by the 
procedure. Because the spatial distributions of the toothed and square waves are partially 
overlapped, which violated the spatial independent assumption for sICA, they cannot be 
separated accurately either by sICA or by tICA individually. 

4  fMRI experiment 

Data were acquired in a GE Signa System operating at 1.5 Tesla at the Second 
Xiangya Hospital of Central South University. Four normal subjects (two males, two 
females) participated in the study. MR scanning parameters are: TR = 3 s, TE = 60 ms, 
gap = 1.5 mm. Total 8 datasets with 100 scans (16 oblique slices, matrix = 64×64) were 
acquired, the resolution is 3.75 mm× 3.75 mm× 5 mm. Subjects were scanned while 
performing left-hand and right-hand movements. The movements were elicited with a 
periodic design consisting of 5 blocks of 20 scans. Each block consisted of 30 seconds 
of baseline followed by 30 seconds of movement under visual cue. The whole experi-
ment lasted 312 s. All the data were processed off line with the same set of parameters. 

The results of 8 datasets are consistent with physiological knowledge. The result of 
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one subject test is taken as an example. Two normalized responses induced by left hand 
movement are shown in fig. 4, the corresponding relative spatial distribution maps are 
shown in fig. 5. Signal dynamic responses shown in fig. 4(a) is generally called consis-
tent task-related (CTR) component, and the corresponding cortex areas were constantly 
activated when task was performed, and returned to baseline when subject was in rest. 
The activated cortex areas shown in fig. 5(b) which contained the signal dynamic re-
sponse shown in fig. 4(b) were remarkably activated at the beginning of the hand 
movement task and then returned to the baseline although the task was still going on, i.e. 
this kind of cortex area was only correlated with the beginning of tasks, and the corre-
sponding signal dynamic response shown in fig. 4(b) was called transiently task-related 
(TTR) component. The CTR cortex areas include ipsilateral (activated in 6 datasets) and 
contralateral (activated in 8 datasets) sensorimotor cortex (M/S), supplementary motor 
area (SMA) (activated in 6 datasets), ipsilateral (activated in 6 datasets) and contralateral 
(activated in 4 datasets) cerebellum. Among all the CTR cortex areas, the contralateral 
M/S was the most activated areas measured either by size or by intensity. These results 
are consistent with the existing physiological experiments. 

 
Fig. 4.  The unit magnitude stimuli-induced signal dynamic responses of task-related cortex areas separated from 
one subject data. (a) The consistently task-related component; (b) the transiently task-related component. 

 
Fig. 5.  Task-related cortex areas separated by the suggested procedure from one trail when the subject did a left 
hand movement task. The areas were marked by white in the brain images. (a) is the CTR cortex areas, and (b) is the 
TTR cortex areas. 
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TTR area, the ipsilateral cerebellum (activated in 3 datasets) is partially overlapped 
with CTR areas. Ipsilateral cerebellum participates in the accurate movement orientation, 
and the stimuli-induced signal response suggested that it may participate in preparation 
and startup of movement. SMA, as has been demonstrated by Roland[22], also partici-
pates in the preparation and startup of movement. The different characteristics of two 
areas’ stimuli-induced signal responses suggested that the underlying mechanisms of 
movement’s preparation and startup are different, on which further studies are necessary. 

Except the contralateral M/S, the task-related cortex areas were not constantly ac-
tivated in all the datasets, which may be relative to subject’s physiological state, aute-
cological difference and the SNR of experimental data[23,24]. 

5  Discussion 

When the spectral analysis was used to detect the task-related cortex areas, the re-
sults would not be influenced by the delay of the signal response to the onset of task and 
the responses’ concrete temporal architecture, so the hemodynamics need not to be as-
sumed a prior, and the results would be more objective. As is well known, not all the 
spectral analysis methods can obtain a satisfactory result. In general, the spectral analy-
sis methods can be classified into parametric and nonparametric methods. What is the 
most difficult in the parametric spectral analysis is the selection of the model order. If 
the selected order is too low, the structure in the underlying spectral distribution may be 
missed; if too high an order is selected, the spurious peaks could be introduced. While 
the nonparametric spectral analysis includes the periodogram and windowing methods, 
etc. For these methods, distribution of spectrum need not be assumed, but when the 
spectrum of interest has a large dynamic range, especially when the spectrum has peaks, 
the result will be unreliable[18]. We choose MTM as the spectral analysis tool because it 
is a good choice for capturing the “peaks” in the interested spectrum, furthermore the 
significance of the line frequency components’ existence can also be tested and the result 
is robust and reliable.  

The voxels picked out by the MTM are significantly activated, so the SNR of data 
to which tICA is applied is much higher than that of the raw data, and the spatial dimen-
sion of data is reduced greatly. This approach eliminates the illness of the data signifi-
cantly and makes the stimuli-induced signal dynamic responses to be separated effi-
ciently. It must be pointed out that the task-related cortex areas can be successfully 
separated only if their responses satisfied the temporal independent and non-Gaussian 
assumption, or the results will be unreliable. Temporal correlation of the tasks should be 
reduced when the paradigm is designed. 

The advantages of the procedure suggested in this paper are obvious compared to 
the prevalent methods such as SPM[2, 3], sICA, tICA. For SPM, the cerebral hemody-
namics, the architecture of stimuli-induced signal dynamic responses and distribution of 
background noises must be assumed, and the result is usually highly related to how well 
these assumptions are satisfied. The results obtained by sICA are difficult to be ex-
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plained, tICA is time-consuming and sensitive to SNR. The task-related independent 
components could not be separated when tICA was directly applied to raw data. What is 
more, the spatial distribution, signal dynamic responses of the task-related cortex areas 
and the noises’ distribution must be assumed when univariable t-test method, wavelet 
analysis etc. were utilized, and the stimuli-induced signal dynamic responses cannot be 
obtained by these methods. Stimuli-induced signal dynamic responses are important in 
the brain function research because it suggests the differences of underlying information 
processing mechanism of cortex areas. Unifying the temporal and spatial information of 
cortex areas’ signal response is helpful for finding new cerebral information processing 
mechanism. The procedure suggested in this paper is robust and less time-consuming. 
Task-related cortex areas can be detected with significance, together with the stim-
uli-induced signal dynamic responses, so more information can be obtained by the pro-
posed procedure. The procedure will be a helpful tool for studying the temporal-spatial 
information processing mechanism of neural networks in brain. The procedure can also 
be used to investigate the brain rhythm[25], and good results are expected if it is applied 
to EEG[13] and functional optical imaging (OI) data. 
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