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Abstract

Twelve multivariate calibration method alternatives are compared to establish the effect of spectral nonlinearity and
collinearity on accuracy and precision of determined results. Simulated and real spectral data are used in this research. This
study can help us to select an optimum method for determination. q 1999 Elsevier Science B.V. All rights reserved.
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1. Introduction

In recent years, more and more chemometricians
have become interested in the multicomponent cali-
bration method. Up to now, many multicomponent
calibration methods have been developed, and new
methods will be presented in the future. Although it
is necessary to introduce some new methods, how to
use them is more important. Especially, which
method can be used under what condition, and which
method cannot be used in a studied object. For this
reason, we have investigated the applicability of mul-
ticomponent calibration methods and got satisfactory
results. We are working on a software package to
present these results.

1. A set of standard samples must be arranged in
an orthogonal factorial design in order to avoid the
collinearity among them. The experimental operation
is normalized according to error propagation theory.

2. We simulated two component spectra with equal
strength and a different degree of collinearity. A
group of optimum criteria was used to represent the
collinear feature of the system studied and built the
relationship between these criteria and the applicabil-
ity of calibration methods. On this basis, we sug-
gested a method to simulate an objective system. It
enables us to select a suitable multicomponent cali-
bration method with only a few experiments.

3. We use these simulation results in four differ-
ent systems of compound preparation. We show that
the simulation results accord surprisingly well with
those obtained from an objective pharmaceutical sys-
tem.

In our study, we compared the results of classical
Žcalibration methods Multivariate Linear Regression,

K-matrix Represent, Target Factor Analysis, Kalman
.filter, Partial Least Squares , improved calibration

Žmethods Ridge Regression, Modified Target Factor
Analysis, Iterative Target Factor Analysis, NonLin-

. Žear Partial Least Squares , robust regression Maxi-
mum Likelihood Estimator, Robust Partial Least

.Squares and the methods of classical calibration
method combined with a diagnostic method. These
studies gave us some rules about the applicability of
these calibration methods.

In order to evaluate these methods, mean recovery
was used as the measure of accuracy and RSD as the
measure of precision. The concentration of the com-

ponent in each sample is not the same. In order to
calculate the RSD, firstly, the concentration must be
expressed as a percentage, and then the RSD is cal-
culated.

The results of P-Matrix Representation were very
unsatisfactory. This is probably because the matrix
Ž T .AA , the covariant matrix of absorbance, is com-
monly large dimensional and singular. Its inverse will
give a larger error or not exist. So, the results of P-
Matrix Representation is not shown here.

2. Mathematical theory and algorithm

In this study, we compared twelve commonly used
multivariate calibration methods: the Multivariate

Ž . w xLinear Regression MLR 1 , K-matrix representa-
Ž . w x Ž . w xtion AKC 2 , Kalman filter Kalman 3 , Target

Ž . w xtransformation Factor Analysis TFA 4 , Modified
Ž . w xTarget Factor Analysis MTFA 5 , Iterative Target

Ž . w xFactor Analysis ITFA 6 , Partial Least Squares
Ž . w x Ž . w xPLS 7 , Ridge regression Ridge 8 , NonLinear

Ž . w xPartial Least Squares NLPLS 9 , Maximum likeli-
Ž .hood estimation: Andrew function method Andrew

Ž . w xand Hampel function method Hampel 10 , Robust
Ž . w xPartial Least Squares RPLS 11 . To evaluate the

effect of outliers on results of variable methods, three
different diagnostic methods are selected and com-

Ž . w xpared. They are Cook square distance Cook 12 ,
Ž . w xHatmatrix H-matrix 13 and Robust Diagnosis

Ž . w xRD 14 . In order to discriminate the quality of the
Ž .analytical system main relativity of spectra , we se-

Ž . w xlectively use condition number Cond 15 , correla-
Ž .tion coefficient R and net analytical signal of com-

Ž . w xponent NS 16 . The theory and algorithms can be
found in the references mentioned above. So, they
will not be given here.

3. Simulation

3.1. Numerical simulated spectra

3.1.1. Simulating collinearity of spectra
A two-component analytical system was simu-

lated. Two Gaussian curves were used as the spectra
of two components. From these spectra, the absorp-
tivity matrix was given. In order to avoid the inter-
ference of other factors, we assumed that the absorp-
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Fig. 1. Simulating spectra: system 1: difference of 1s between two
peak maxima, system 2: difference of 0.62s between two peak
maxima, system 3: difference of 0.23s between two peak max-
ima, system 4: difference of 0.20s between two peak maxima.

tive strength and concentration of the two compo-
nents are the same. The difference is only the posi-
tion of maximum absorption in two Gaussian curves.
In model sets, the concentrations were 80%, 90%,
100%, 110% and 120% of labeled amount at five
levels. We used an orthogonal factorial design to get
the matrix of standard concentration of twenty five
samples. In test sets, fifty samples were observed by
varying 10% to 100% of labeled amount with five
levels. The matrices of absorbance of observed sam-
ples were obtained by Beer’s law and 2% random er-
ror was added to the absorbance. Four simulated
spectra are shown in Fig. 1. Their net analytical sig-
nal of component, condition number and correlation
coefficient are given in Table 1. We used a multi-
component calibration method to process these data
as stated above. The results are presented in Table 2.
From Tables 1 and 2, we can conclude as follows.

1. In an analyzed system, the collinearity between
the spectra is lower, i.e., in system 1, almost every
calibration method can get a good result. The accu-
racy and precision of these methods have no signifi-
cant difference. The results of every calibration
method show a significant difference, accompanied
by an increment of the collinearity of spectra of the
analyzed system. The accuracy and precision of ev-
ery method decrease with the increment of collinear-
ity of spectra. The degree and the rate of change dif-
fer with the quality of analyzed system. The results
of the AKC method and the MLR method are poorer.

This is obvious because the AKC method must be
inversed two times. So, the error will be enlarged with
collinearity of analyzed system. The MLR method is
similar to the AKC method. In system 2, other meth-
ods can give satisfactory results, but the results of
these two methods are worse. The algorithm of
Kalman filter has a smoothing function. It can partly
filter off noise. Factor analysis, Partial least squares,
etc. use a latent vector instead of the observed ma-
trix. Because of the orthogonality among latent vec-
tors, the selectivity is increased and the error is elim-
inated partly when the collinearity of the analyzed
system is further increased, as in systems 3 and 4. The
results of every method and the tendency of change
are the same as above. In this situation, PLS still gives
good results. The results of TFA and MTFA are also
better but the fluctuation of results is larger. It is
shown that PLS is best at resisting the influence of
collinearity of the analyzed system.

2. The criteria of collinearity for spectra of the an-
alyzed system: we selected three criteria in order to
elucidate the degree of collinearity of spectra of the
analyzed system. From Tables 1 and 2, we can see
that the tendency of the quality of the analyzed sys-
tem to change is the same as that of the applicability
of the method following the change of quality of the
analyzed system, when the analyzed systems have
shown strong or weak collinearity of spectra. The ac-
curacy and precision of methods become lower or
higher. The net analytical signal of the component is
the most efficient for deciding the capacity of the
method over three criteria. It can show not only the
situation of every component, but also give high ac-
curacy of judgement. When the net analytical signal
of each component is more than ten, the quality of the
analyzed system is high. Every method can get good
results. When the net analytical signal of components
is close to ten, these are ill-conditioned. The effects
of every method show obvious differences. Only PLS

Table 1
The criteria of collinearity for four systems

System 1 System 2 System 3 System 4

Component 1 Component 2 Component 1 Component 2 Component 1 Component 2 Component 1 Component 2

NS 36.56 36.56 24.21 24.19 10.10 10.09 9.19 9.19
Cond 5.2928 14.49 96.10 116.28
R 0.2193 0.5060 0.9022 0.9455
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and RPLS can give better results in such analyzed
systems. When the net analytical signal of a compo-
nent is less than ten, the condition number and corre-
lation coefficient are also very large. This shows that
the analyzed system is seriously ill-conditioned. In
such a situation, we must select a method that is good
at resisting collinearity of spectra such as Ridge, PLS
and RPLS, etc. We can also select the wavelength
points so as to decrease collinearity of spectra.

3. For a linear analyzed system, the results of
NLPLS are not ideal. In our experience, the regres-
sion coefficient of square terms is neither zero nor
near zero. Thus if we want to select a model to fit a
certain system, it must be combined with our special
knowledge and practical experience about the sys-
tem. A better model leads to better results. Most of
the analyzed systems observed by us have a good
linearity.

4. Ridge regression shows superiority only when
the collinearity of the analyzed system is so strong
that ordinary calibration methods can not be used. For
a system with good selectivity as in system 1 and 2,
its results are similar to that of other methods or
worse. So, only when we have satisfactory reasons to
show the system analyzed is seriously ill-conditioned
can we use this method. So, we suggest that ridge re-
gression is used only when the system almost cannot
be estimated.

As can be seen above, different modified methods
were presented with problems of the analyzed sys-
tem. Only when these problems really exist, can these
methods be used.

In the situation without outliers, the results of ro-
bust methods are similar to that of ordinary calibra-
tion methods. According to theory, the base of maxi-
mum likelihood is still least square estimated. It only
improves the target function so as to decrease its
sensitivity to outliers. When a system does not have

an outlier, the results of the M-estimator are no bet-
ter than that of ITFA and PLS. The principle of RPLS
is the same as PLS, it only adds a weighing proce-
dure so as to decrease or eliminate the effect of out-
liers. Replicating weights are complex and the
amount of computation is increased by a factor of ten
or more. Also, its results are related to the parame-
ters selected. The RPLS is the best in all situations.

3.1.2. Simulation of nonlinearity of spectra
In order to observe the effect of an added outlier

in the system on the applicability of the calibration
method, we first constructed four groups of data by
adding outliers differing in number and magnitude
following Tables 3 and 4 into the simulation data
shown in Fig. 1. They are denoted as database 1, 2, 3
and 4, respectively.

We used each method to calculate every database.
ŽThe results are presented in Table 4. The results of

database 3 are already changed to so bad. The results
of database 4 are very ugly. So they are not to be

.listed here .
1. As can be seen in Table 4, the effect of the out-

lier on the applicability of multivariate calibration
methods was related to the number and magnitude of

Ž .the outlier i.e., nonlinearity and to the collinearity
of the system.

In systems 1 and 2, the collinearity of spectra is
not so strong. When outliers are small and fewer as
in database 1, their effect on the results is small. Same
outliers give a greater effect with strongly collinear
systems such as 3 and 4. The fluctuation of results
becomes large.

When the outlier is greater as in database 3, the
results change for the worse and fluctuation obvi-
ously becomes larger. In strongly collinear systems,
some methods even give negative results. When more
outliers are included as in database 2, even if they are

Table 3
Design for perturbation studies with outliers

Database System 1 System 2 System 3 System 4

Number Magnitude Number Magnitude Number Magnitude Number Magnitude

1 3 5s 3 5s 3 5s 3 5s

2 6 5s 6 5s 6 5s 6 5s

3 1 10s 1 10s 1 10s 1 10s

4 3 10s 3 10s 3 10s 3 10s
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small, the results of each method are obviously worse
than that of database 1. We can see from this that
firstly, the effect of the outlier on the results is closely
related to the quality of the system. More collinearity
of the system shows more effect of the outlier. Sec-
ondly, the effect of the outlier on the results is re-
lated to the number and magnitude of the outlier. It
should be pointed out specially that the effect of the
outlier on the results of the Kalman filter is weak be-
cause the filtering process of this method is from one
wavelength to another. Small amounts of outlier only
change the results of some points, but its effect on the
final results is small.

2. It can be seen from Table 4 that when the
Ž .collinearity of a system is not strong system 1 and

the number of outliers is less, the magnitude is small
Ž .database 1 , and the robust regression methods have
no obvious superiority. When the collinearity of the

Ž .system is strengthened system 3, 4 of database 1 , the
robust methods are better than classical methods in
resisting the effect of outliers. The results are close
to those of systems 3 and 4 without outliers. When

Ž .large outliers are added database 3 , the results of
robust methods with every system are obviously su-
perior to those of classical methods. When the num-

Ž .ber of outliers are increased database 2 , robust
methods still get good results in the system with good

Ž .quality systems 1 and 2 with lower collinearity .
When the collinearity of a system is strong and the
number and magnitude of the outliers reach a certain
degree, the results of Andrew and Hampel methods
become worse but RPLS is superior. The change of
collinearity of the system has no obvious effect on
results of RPLS. So, RPLS is the best method when
the collinearity of the system is very strong.

3. The Robust methods were compared with a
combined diagnostic and classical calibration method.
In order to combine the diagnostic method and clas-
sical calibration method, we firstly studied and com-
pared three diagnostic methods, the Cook, the H-

Ž .maxtrix and the Robust Diagnosis RD . In practice,
the RD diagnosis is the best. So, we used this diag-
nostic method combined with classical calibration
methods.

Robust regression is the same in nature as the di-
agnostic combined method. Their difference is only
the deleting order of outliers. The object and effect
deleting outlier are the same. Database 2 was calcu-

lated with Robust methods and the combined method
of diagnostic and classical calibration methods. The
results are presented in Table 5. It is shown that the
results of robust methods have no obvious differ-
ences from those of combined diagnostic methods.
ŽAndrew and Hampel compared with the combined
method of diagnosis based on LS estimator, RPLS

.with the combination of diagnosis-PLS .

3.2. Simulating real spectra

In order to predict the effect of collinearity of a
system on the applicability of calibration methods, we
simulated real spectra.

Under the experimental condition selected, the
pure components are determined and are assigned the
Ž .E absorptivity matrix. In model sets, the concentra-

tion of each component is divided into five levels by
the proportion of prescription giving a suitable range
of absorbance. A standard concentration matrix was
constructed with twenty five standard mixtures by
orthogonal factorial design. The standard absorbance
matrix for these concentrations was given by Beer’s
law. In test sets, the labeled amount around 100% is
divided into five levels with a span of 10% giving us
the concentration matrix observed. From these con-
centrations, the absorbance matrix of the sample was
calculated by Beer’s law. To all absorbance matrices
we randomly added 2% as error.

The aim of simulating real spectra is to predict the
applicability of calibration methods from the
collinearity of the system. We only need to deter-
mine the absorbance of pure components and to get
the E matrix for simulating. First, we can use the cri-
teria of the quality of the system to analyze the
collinearity of the system and then we can decide
which method can be used, and which method can-
not be used from the results simulated. Thus, we can
gain knowledge about the system analyzed in ad-
vance.

3.2.1. The simulation of two components in com-
pound Dong-Mian-Ling tablets

The spectra of chloropromazine and promethazine
were determined. The matrix of standard concentra-
tion, standard absorbance and the absorbance of the
observed system were constructed by the method
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Table 5
The results of robust method compared with those of a combined diagnostic and classical method

Method Database 2

System 1 System 2

Component 1 Component 2 Component 1 Component 2

Ž . Ž . Ž . Ž . Ž . Ž . Ž . Ž .Recovery % RSD. % Recovery % RSD. % Recovery % RSD. % Recovery % RSD. %

MLR 98.86 0.76 99.49 0.80 101.22 1.86 98.00 1.29
AKC 98.92 0.89 97.88 0.79 102.98 1.76 97.49 1.06
Kalman 99.30 0.72 99.89 0.63 101.31 1.51 98.34 1.14
TFA 99.40 0.76 99.80 0.69 101.51 1.64 98.03 1.35
MITFA 99.99 0.74 99.95 0.61 100.05 1.57 99.95 1.05
ITFA 100.01 0.75 99.98 0.64 100.06 1.63 99.95 1.06
PLS 100.00 0.49 100.00 0.52 100.00 1.02 100.01 0.74
NLPLS 97.58 0.84 98.85 0.68 99.43 3.23 99.06 2.87
RPLS 99.93 0.69 99.67 0.67 100.97 0.95 100.73 0.79

Method System 3 System 4

Component 1 Component 2 Component 1 Component 2

Ž . Ž . Ž . Ž . Ž . Ž . Ž . Ž .Recovery % RSD. % Recovery % RSD. % Recovery % RSD. % Recovery % RSD. %

MLR 103.20 2.02 102.11 2.28 103.57 4.10 95.71 3.56
AKC 103.55 1.88 94.25 2.79 107.09 3.51 94.03 2.88
Kalman 103.43 2.19 96.82 2.30 103.61 3.72 95.59 3.31
TFA 102.55 2.03 97.41 2.42 106.10 5.31 93.21 5.67
MITFA 100.02 1.82 99.93 2.23 100.22 4.22 99.91 3.66
ITFA 100.02 2.07 99.90 0.83 100.37 4.85 99.66 3.89
PLS 99.9 0.92 100.11 0.83 100.00 1.71 100.00 1.47
RPLS 101.55 1.22 101.72 1.02 100.13 1.93 99.67 2.02

shown above. The outliers of observed data were
eliminated by RD diagnosis. The quality criteria of
the observed system were calculated in Table 6.

From Table 6 we can predict that the net analyti-
cal signal of components is more than 10. Conds
39.32, Rs0.8417. This system has some ill-condi-
tioning. We can conclude by numerical simulation of
results that every method has different applicability.
ITFA, PLS and RPLS will give better results. The
data simulated real spectra were calculated by every
calibration method. The applicability of calibration

Table 6
The qualitative analysis of two component systems in the com-
pound Dong-Mian-Ling tablet

NS Cond R

Chloropromazine 15.56 39.32 0.8417
Promathazine 15.55 0.8417

methods were evaluated by mean recovery and RSD.
The results are listed in Table 7.

From Table 7, we can see that the conclusion pre-
dicted by the quality criteria of the observed system
is basically identical to that predicted by numerically

Table 7
The applicability of simulating the compound Dong-Mian-Ling
tablets system

Method Chloropronazine Promethazine

Ž . Ž . Ž . Ž .Recovery % RSD % RSD % Recovery %

MLR 100.46 1.78 99.45 1.62
AKC 93.91 1.92 104.06 1.34
Kalman 100.46 1.79 99.46 1.46
TFA 100.39 1.99 99.46 1.66
MTFA 99.92 1.59 100.10 1.26
ITFA 99.92 1.59 100.07 1.25
PLS 100.00 0.74 100.00 0.62
Ridge 100.52 1.76 100.11 1.58
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Table 8
The qualitative analysis of a three-component system in Su-Xiao
capsule

NS Cond R

PAR. 31.12 15.93 1.0000 y0.1622 0.4534
CAF. 34.25 y0.1622 1.0000 0.2432
CHL. 31.90 0.4534 0.2432 1.0000

simulated spectra. PLS, ITFA and RPLS gave the best
results. AKC gave the worst results. The perfor-
mance of other methods lies in between them.

3.2.2. The simulation of three components in com-
pound Su-Xiao capsules

The spectra of paracetamol, chlorophenamine and
caffeine were determined. The matrix of standard
concentration, standard absorbance and absorbance of
observed system were constructed by the method as
indicated above, The outliers of observed data were
eliminated by RD diagnosis. The quality criteria of
the observed system were calculated as shown in
Table 8. From Table 8, we can predict that the net
analytical signal of components is more than 10.
Conds15.93, R is small. The quality of this system
is good. Every calibration method will give good re-
sults if the observed data are good. The perfor-
mances of these calibration methods show no signifi-
cant difference.

The data of simulated real spectra were calculated
by every calibration method. The applicability of cal-
ibration methods were evaluated by mean recovery
and RSD. The results are listed in Table 9. From
Table 9, we can see that the results were similar to
those predicted with numerically simulated spectra.

Table 10
The qualitative analysis of four-components system in Qu-Tong
tablets

NS Cond R

Phein 9.58 1.0000 y0.1521 y0.8924 0.1054
Phenl 8.96 y0.1521 1.0000 y0.6112 0.4172
Caffe 8.48 619.66 y0.8924 y0.6112 1.0000 y0.9082
Amino 6.68 0.1054 0.4172 y0.9082 1.0000

3.2.3. The simulation of four components in Qu-Tong
tablets

The spectra of phenacetin, phenobarbital, caffeine
and aminophenazone were determined. The matrix of
standard concentration, standard absorbance and the
absorbance of the observed system were constructed
by the method as indicated above. The outliers of ob-
served data were eliminated by RD diagnosis.

The quality criteria of the observed system were
calculated in Table 10. From Table 10 the prediction
can be made. The net analytical signal of the
phenacetin component is near 10. There are large
amounts in a prescription and with a big absorptivity.
So, better results are obtained by PLS, ITFA and
RPLS and worse results by other methods. Under the

Žquality of this system Cond s 619.66, serious ill-
.condition most methods will not give very satisfac-

tory results with other components.
The data of simulated real spectra were calculated

by each calibration method. The applicability of cali-
bration methods was evaluated by mean recovery and
RSD. The results are listed in Table 11. We can see
from Table 11 that the results agree with prediction.

Table 9
The applicability of simulating the Su-Xiao capsule system

Method Paracetamol Caffeine Chlorophenamine

Ž . Ž . Ž . Ž . Ž . Ž .Recovery % RSD % Recovery % RSD % Recovery % RSD %

MLR 100.22 0.72 100.09 0.96 102.25 2.02
AKC 99.52 0.52 101.31 1.26 95.79 2.68
Kalman 100.24 0.49 99.22 0.78 101.97 2.39
TFA 100.36 0.54 98.06 1.21 102.90 3.02
MTFA 99.47 0.58 99.72 1.13 103.45 2.88
ITFA 99.61 0.51 100.05 0.84 102.23 2.19
PLS 99.34 0.40 99.55 0.62 105.04 1.93
Ridge 100.19 0.66 99.84 0.64 98.76 4.51
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Table 11
The applicability of simulating the Qu-Tong tablets system

Method Phenacetin Phenobarbitol Caffeiene Aminophenazone

Ž . Ž . Ž . Ž . Ž . Ž . Ž . Ž .Recovery 5 RSD % Recovery % RSD % Recovery % RSD % Recovery % RSD %

MLR 99.33 1.80 103.11 5.14 97.24 6.41 102.74 6.91
AKC 73.85 17.7 95.73 17.72 y53.90 y0.43 y51.70 y3.36
Kalman 99.82 1.57 104.71 4.87 99.86 4.53 99.86 3.38
TFA 98.93 3.21 102.25 4.72 92.60 8.20 101.96 5.40
MTFA 99.89 2.11 100.41 4.53 100.58 6.67 100.86 5.24
ITFA 100.02 1.81 100.22 3.64 100.84 5.61 100.42 4.63
PLS 100.01 0.97 100.15 2.68 100.29 3.54 100.01 2.86
RIDGE 102.55 8.31 99.53 1.79 98.22 7.00 101.32 4.11

The simulated results of three real systems have
shown that the quality criteria of a system can give
some direction before experiment.

4. Determination of real samples

4.1. Instrument and chemicals

A Shimadzu UV–Vis 265 spectrophotometer was
used to obtain the experimental data. An IBM 586
microcomputer was used in the simulation and calcu-
lation of experimental data. All programs were writ-
ten in BASIC and FORTRAN. Chloropromazine, promet-
hazine, paracetamol, caffeine, chlorophenamine,
phenacetin, phenobarbital and aminophenazone are of

Ž .pharmacopoeia 1995, P.R. China quality. Analyti-
cal reagent grade chemicals and deionized water were
used.

4.2. Experiments

4.2.1. The determination of components in Dong-
Mian-Ling tablets

Standard solutions of chloropromazine and
promethazine and the solutions of ten artificial sam-

Fig. 2. Spectra of chloropromazine and promethazine. 1: Chlor-
Ž y1 . Ž y1 .promazin 5 mg ml ; 2: Promethazine 5 mg ml .

ples with the proportion of prescription were pre-
pared with 0.1 mol ly1 HCl. The solutions of artifi-
cial samples serve as model sets. The concentration
of chloropromazine and promethazine was 5 mg
mly1. These concentrations described above were
used as 100% of labelled amount. The artificial sam-
ples were given by changing 10% around 100% of
labelled amount with five levels according to orthog-
onal factorial design. In test sets, ten artificial sam-
ples were prepared as follows: Suitable amounts of
each component and excipient in tablet with the same
proportions as in the prescriptions were weighed ac-
curately, ground and mixed in mortar. The spectra of
pure components were recorded from 200 to 280 nm
and are shown in Fig. 2. The stability and linear range
of each solution were observed. The absorbance of
each solution of model sets and test sets were deter-
mined every two nm from 220 to 280 nm. The out-
liers were deleted by RD diagnosis. The experimen-

Table 12
Comparison of results of combined and robust methods with an
artificial sample of Dong-Mian-Ling tablets

Method Chloropronazine Promethazine

Ž . Ž . Ž . Ž .Recovery % RSD % RSD % Recovery %

MLR 101.19 1.84 98.25 2.01
AKC 92.15 2.24 103.25 2.23
Kalman 101.23 1.63 98.59 1.87
TFA 100.88 2.04 98.95 2.53
MTFA 100.39 1.58 99.15 1.51
ITFA 99.97 1.52 99.26 1.39
PLS 100.75 1.02 100.49 1.15
Ridge 101.35 1.42 101.74 1.77
Hampel 101.17 1.56 98.44 1.51
RPLS 99.97 0.92 100.76 0.93
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tal data were calculated by each calibration method.
The results of these and Robust regression methods
are presented in Table 12.

From Table 12, we can see that the results are al-
most identical with those predicted. RPLS, PLS,
ITFA and MTFA gave good results. The results of
AKC were the worst.

4.2.2. The determination of components in Su-Xiao
capsule

Standard solutions of paracetamol, caffeine and
chlorophenamine and the solutions of ten artificial
samples in the proportion of prescription were pre-
pared with 0.01 mol ly1 NaOH. The solutions of ar-
tificial samples served as model sets. The concentra-
tions of paracetamol, caffeine and chlorophenamine
were 10 mg mly1, 2 mg mly1 and 1.8 mg mly1, re-
spectively. These concentrations were used as 100%
of labelled amount. The artificial samples were given
by changing 10% around 100% of labelled amount
with five levels according to orthogonal factorial de-
sign. In test sets, ten artificial samples were prepared
as follows: Suitable amounts of each component and
excipient in tablet with the same proportions as in the
prescriptions were weighed accurately, ground and
mixed in mortar. The spectra of pure components
were recorded from 200 to 350 nm and are shown in
Fig. 3.

Fig. 3. Spectra of paracetamol, caffeine and chlorophenamine. 1
Paracetamol; 2 Caffeine; 3 Chlorophenamine; 4 Excipient.

The stability and linear range of each solution were
observed. The absorbance of each solution of model
sets and test sets was determined every two nm from
220 to 300 nm. The outliers were deleted by RD di-
agnosis. The experimental data were calculated by
each calibration method. The results of these and Ro-
bust regression methods are presented in Table 13.
From Table 13, we can see that the results are almost
identical with those predicted. The quality of this
system is fine. Each calibration method can give us
good results. The results for chlorophenamine are
slightly different from those predicted. This is proba-
bly due to low amounts in the prescription and less
absorptivity. So, the RSD is slightly larger than that
of prediction.

Table 13
The results of artificial samples of Su-Xiao capsule

Method Paracetamol Caffeine Chlorophenamine

Ž . Ž . Ž . Ž . Ž . Ž .Recovery % RSD % Recovery % RSD % Recovery % RSD %

MLR 100.89 0.50 100.26 1.40 96.51 3.53
AKC 101.84 1.85 101.59 2.27 89.83 4.37
Kalman 101.13 0.74 101.99 1.21 95.75 2.26
TFA 100.85 0.78 101.30 1.46 92.94 3.42
MTFA 99.92 0.85 102.22 1.46 94.16 2.35
ITFA 100.56 0.72 100.33 1.52 96.07 2.31
PLS 99.97 1.01 99.72 1.16 102.1 2.11
Ridge 101.10 0.76 97.85 1.14 96.06 2.27
NLPLS 100.24 5.32 95.91 2.79 100.94 3.35
Hampel 101.12 1.71 99.10 0.99 96.88 2.72
RPLS 99.54 1.09 100.43 1.02 101.74 2.15
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Fig. 4. Spectra of phenacetin, phenobarbitol, caffeine and
aminophenazone. 1 Phenacetin; 2 Phenobarbitol; 3 Caffeine; 4
Aminophenazone; 5 Excipient.

4.2.3. The determination of components in Qu-Tong
tablet

Standard solutions of phenacetin, phenobarbital,
caffeine and aminophenazone and the solutions of ten
artificial samples with the proportion of prescription
were prepared with 75% ethanol. The solutions of ar-
tificial samples served as model sets. The concentra-

tions of phenacetin, aminophenazone, phenobarbital
and caffeine are 15 mg mly1, 15 mg mly1, 1.5 mg
mly1 and 5 mg mly1, respectively. These concentra-
tions were used as 100% of labelled amount. The ar-
tificial samples were given by varying 10% around
100% of labelled amount with five levels according
to orthogonal factorial design. In test sets, ten artifi-
cial samples were prepared as follows: Suitable
amounts of each component and excipient in tablet
with the same proportions as in the prescriptions were
weighed accurately, ground and mixed in mortar. The
spectra of pure components were recorded from 200
to 300 nm and are shown in Fig. 4. The stability and
linear range of each solution were observed. The ab-
sorbance of each solution of model sets and test sets
were determined every two nm from 220 to 280 nm.
The outliers were deleted by RD diagnosis. The ex-
perimental data were calculated by each calibration
method. The results of these and Robust regression
methods are presented in Table 14.

Table 14
The results of artificial sample of Qu-Tong tablets
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From Table 14, we can see that the results are
identical with that of simulation of numerical and real
spectra. The results of PLS, ITFA and RPLS are bet-
ter than those of other methods.

5. Conclusion

From the results of simulation of numerical and
real spectra and that of a real analytical system, it can
be seen that the simulated results are almost identical
to the determined results of a real analytical system.
So, we can predict an observed system with only a
few experiments before determination by simulation.
This can direct us to select a method for the real de-
termination.

The quality criteria of an observed system are very
useful, especially the net analytical signal of compo-

Ž .nents NS . When the NS is more than ten, most cal-
ibration methods can give us good results. If the NS
is less than ten we must carefully select the calibra-
tion methods for the system observed.

We suggest that the outliers are deleted before
treatment with nonrobust methods to improve the re-
sults.
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