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In this work, a nonlinear dynamics method, coupled map lattices, was applied to functional
magnetic resonance imaging (fMRI) datasets to examine the spatiotemporal properties of
resting state blood oxygen level-dependent (BOLD) fluctuations. Spatiotemporal Lyapunov
Exponent (SPLE) was calculated to study the deterministic nonlinearity in resting state
human brain of nine subjects based on fMRI datasets. The results show that there is non-
linearity and determinism in resting state human brain. Furthermore, the results demon-
strate that there is a spatiotemporal chaos phenomenon in resting state brain, and
suggest that fluctuations of fMRI data in resting state brain cannot be fully attributed to
nuclear magnetic resonance noise. At the same time, the spatiotemporal chaos phenome-
non suggests that the correlation between voxels varies with time and there is a dynamic
functional connection or network in resting state human brain.

� 2008 Elsevier Inc. All rights reserved.
1. Introduction

Functional magnetic resonance imaging (fMRI) has emerged as a useful and noninvasive technique for studying the func-
tion of the brain. Using magnetic resonance technique, researchers have found that it is possible to indirectly detect changes
in blood-oxygenation levels that are a result of neuronal activation. In the past decade, fMRI has provided a powerful ap-
proach to study the structure-function relationship in the human brain. Most of studies concentrated on detecting or esti-
mating brain regions involved in specific cognitive or sensor-motor tasks.

Conscious rest has been widely used as a baseline condition in positron emission tomography (PET) and fMRI neuroim-
aging experiments. In most cases, rest state is defined as a state that differs from the active state both in terms of conditions
(open/closed eyes, absence/presence of a stimulus input) and instructions given to the subject. A rest state can therefore be
used in a wide variety of experiments. However, it is an ill-defined mental state because it may vary both from one subject to
another and within the same subject [1].

The complex behavior of the hemodynamic response is a global phenomenon and the reconstruction of the dynamics re-
corded in fMRI data should make use of the vast amount of spatial information acquired [2]. Electroencephalography (EEG)
and magneto-encephalography (MEG) analysis can achieve higher accuracy (performance) by combining spatial and tempo-
ral approaches [3,4]. Compared with EEG of low spatial resolution, fMRI datasets offer millimeter spatial resolution with
temporal resolutions of the order of seconds. It can offer more spatial information than EEG/MEG. Hence, spatiotemporal
analysis is an important analytic tool of fMRI datasets in brain research [5].
. All rights reserved.
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As a linear spatiotemporal analysis method, correlation analysis has been widely used in the study of functional connec-
tivity based on fMRI datasets. It assumes that the relevant information about the interactions of brain regions is reflected by
a linear relationship between the values of two signals at the same time [6,7]. However, this hypothesis has not thoroughly
been investigated. Recent studies indicated the nonlinear nature of BOLD response [8]. Many nonlinear models between
stimulation and fMRI response are established [9,10]. These nonlinearities are believed to be caused by viscoelastic proper-
ties of blood vessels [8,11], and nonlinearities at the neuronal level, such as the adaptive behavior of neuronal activity [12–
16]. The BOLD response is more sensitive to subtleties of neuronal activity than previously suggested in the literature [17].

Even though there has been an effort to study nonlinear dynamics of brain using Electroencephalogram (EEG) [4,18–20],
very little work has been done in applying method of nonlinear dynamics to fMRI, particularly during the resting state. Frac-
tional Gaussian noise property of fMRI datasets is analyzed using Hurst exponent [21]. An extension of the delta-epsilon ap-
proach is applied to fMRI data to evaluate whether a time course of a candidate pixel provides additional information
concerning the time evolution of reference pixel time series [22]. The nonlinearity arising from the finite dimensional
dynamics is then characterized using patterns of singularities in the complex plane. A finite embedding dimension is a mea-
sure of the determinism of the system, which can be quantified using information theoretic measures like Lempel-Ziv com-
plexity [23]. Using spatial embedding of fMRI datasets, local spatiotemporal chaos in baseline [24] has been reported, but the
significance of nonlinearity has not been tested on fMRI datasets by using surrogate data. Though the nonlinearity analysis of
fMRI dataset in human brain has attracted many researchers, most of works on nonlinear analysis of fMRI are carried on sin-
gle time series voxel by voxel, as is traditionally done in the nonlinear signal processing literature. In addition, because of no
significant stimulation in resting state human brain, it is difficult to detect the nonlinearity by the relationship between
stimulation and its fMRI response.

In this work, a nonlinear dynamics method, coupled map lattices (CML), was applied to fMRI datasets of resting state hu-
man brain. The Spatiotemporal Lyapunov Exponent (SPLE) was calculated for fMRI datasets and the nonlinearity of fMRI
datasets was tested by using surrogate data generated from the fMRI datasets. The positive SPLE was confirmed by a finite
embedding dimension which is a measure of the determinism of fMRI datasets in resting state brain. The results demonstrate
that there is a spatiotemporal chaos phenomenon in resting state brain, and suggest that the fluctuations in resting state
brain cannot be fully taken as nuclear magnetic resonance (NMR) noise, but can be the spatiotemporal properties inhered
in resting state brain. At the same time, the deterministic nonlinear dynamics can get an estimation of spatiotemporal cor-
relation of resting state brain, and the correlation between voxels varies with time and there is a dynamic functional con-
nection or network in resting state brain.

2. Method

Lyapunov exponents can measure the divergence (or convergence) of nearby trajectories. Although there have been a
number of algorithms which attempt to estimate the underlying dynamics recently, most of these algorithms are not suit-
able for a spatiotemporal dataset such as fMRI but can only be applied to single time series.

2.1. Spatiotemporal Lyapunov Exponent

Ricard V. SolÉ and Jordi Bascompte presented a method [25] to evaluate the SPLE numerically when very short time series
are obtained from a spatially distributed dynamical system. This method bases on the concept of coupled map lattices. Cou-
pled map lattices have been widely used as models of spatiotemporal chaos in physics, chemistry and biology.

A dynamical system is given by a set of nonlinear equations as follows:
xj
nþ1ðkÞ ¼ Fj

lðxnðkÞÞ þ Cj
cðxnðkÞÞ; ð1Þ
where j ¼ 1; . . . ; s; x ¼ ðx1
n; . . . ; xs

nÞ and Fj
lðxÞ;C

j
cðxÞ 2 C2ðUÞ. U is a compact set and U � Rs. This set of maps is then defined on a

two-dimensional lattice
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If we have a time series defined as the set:
CjðkÞ ¼ fxj
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Using the lagging method, a phase space of new d-dimensional sets can be reconstructed as follows:
Cj
dðkÞ ¼ fX

j
iðkÞ ¼ ðx

j
iðkÞ; . . . ; xj
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where i = 1, . . . ,m � d + 1 and d is an embedding dimension. Now we consider the global set defined as the union of all local
orbits:
CdðKÞ ¼
[

k2KðLÞ
Cj

dðkÞ ð5Þ
This set is then constructed by (m- (d-1))L2-points.



Fig. 1. The interested slices of resting state fMRI datasets from human brain.
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For each vector Xj
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can hold. Here, e is the maximum initial separation. Then the Spatiotemporal Lyapunov Exponent will be evaluated by:
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where Np is the total number of hk,hi pairs.
By simulation, the method of numerical SPLE estimation is used to study Logistic CML, Lotka-Volterra CML and Host-par-

asitoid CML, which show that low-dimensional chaos can be detected and a consistent estimation of ks with other methods is
attained [25].

Spatiotemporal Lyapunov Exponent would indicate divergence of the orbits in the attractor and hence be an index of the
spatiotemporal correlation between voxels under consideration.

New evidence suggests that essential feature of brain activities can be characterized by low-dimensional dynamics and
self-organized spatial patterns of activity. In this way, the brain can switch flexibly between different coherent states [20].
Now, we use this numerical SPLE estimating method to research the spatiotemporal properties of resting state fluctuations
for fMRI datasets.

2.2. fMRI data acquisition and analysis

Gradient-echo echo planar imaging (EPI) data were acquired from nine healthy volunteers in resting state with closing
eyes, stopping thinking if any idea came up. The datasets were obtained on a 1.5T PHILIPS MEDICAL SYSTEMS Gyroscan
NT scanner (TR = 700 ms, Flip angle = 70� and FOV = 23 cm, with five transection slices covering the visual cortex (SCVC)
and other five transection slices covering the motor cortex (SCMC), 5mm slice thickness, matrix size: 64 � 64 ). After discard-
ing initial scans (to allow for magnetic saturation effects), each time-series is comprised of 600 vol images.

The data were preprocessed with using SPM2 (Statistical Parametric Mapping) software (http://www.fil.ion.ucl.ac.uk/
spm/software/spm2). The time series were realigned, corrected for movement-related effects. A mask containing only brain
voxels was generated by a threshold. Because of no calculation carrying on between slices and in order to retain as much
information as possible, no further preprocess was done. Before calculating the Spatiotemporal Lyapunov Exponent, the
datasets were normalized by their maximums. Then, the Spatiotemporal Lyapunov Exponents were calculated to slices num-
bered by 2, 3, and 4. Fig. 1 shows the images of interested slices. The upper row shows the interested slices covering motor
cortex of brain and the lower row shows the interested slices covering the visual cortex, respectively. In order to test the
nonlinearity of fMRI datasets, surrogate data were generated from fMRI datasets and also calculated the SPLEs using the
same algorithm.

3. Results

The effect of embedding dimension is well illustrated in Fig. 2 for fMRI dataset from one resting state subject. There exists
a plateau after a certain embedding dimension d = 8. Because of small time series, the plateau shows some slow decay as the
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Fig. 2. The effect of embedding dimension.
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embedding dimension increases. When the embedding dimensions are within the scope of 8–12, a characteristic rate of de-
cay is observed: (ks(d) � ks(d + 1)) 6 0.01. For other subjects, similar plateaus can be observed as the embedding dimension d
increases.

Fig. 3 shows the time evolution of the SPLEs for the fMRI dataset from one resting state subject. In Fig. 3, there is no sig-
nificant variety with time for the SPLEs to be observed. For other subjects, the results are similar.

In order to evaluate the uniformity of the variety with time for the SPLEs, we define the time-relative-uniformity TRU as
follows:
TRU ¼ SPLEmax � SPLEmin

SPLEmean
; ð8Þ
where SPLEmax, SPLEmin and SPLEmean are the maximum, minimum and mean of the SPLEs evolving with time for one slice of
a resting state subject, respectively. The results show in Table 1. Though all of the TRUs are within 0.6–12%, most of them are
less than 5%. Therefore, there is no significant temporal variety of the SPLEs to be observed.

The final SPLEs of all interested slices for nine subjects are showed in Table 2. The most important characteristic is that all
SPLEs, which are estimated from the fMRI datasets in resting state subjects, are positive.

Surrogate data are artificially generated for mimicking some properties of the data under study. In the case of testing for
nonlinearity, the surrogate data should have the same Fourier spectrum and autocorrelation function (‘linear properties’) as
the raw data under study. This kind of surrogate data is designed to test the null hypothesis that the signal consists of lin-
early filter Gaussian noise. The popular algorithm for generating this kind of surrogate data can be described in the following
Fig. 3. The temporal evolution of the SPLEs for resting state fMRI dataset. The embedding dimension d = 8, and e = 0.02.



Table 1
The TRU for the SPLEs of fMRI datasets in resting state brain

Slice2 of SCMC (%) Slice3 of SCMC (%) Slice4 of SCMC (%) Slice2 of SCVC (%) Slice3 of SCVC (%) Slice4 of SCVC (%)

Subject1 1.69 1.57 4.39 0.60 0.75 1.14
Subject2 4.48 4.97 9.16 3.67 2.72 6.04
Subject3 3.40 5.51 4.62 1.76 0.89 1.58
Subject4 2.97 8.04 9.75 3.05 1.00 4.83
Subject5 1.95 3.03 2.12 1.15 1.74 2.74
Subject6 8.31 8.13 11.58 6.88 1.32 2.64
Subject7 5.42 0.91 8.35 1.79 0.94 3.76
Subject8 2.91 5.41 4.20 1.27 1.51 0.92
Subject9 2.01 5.64 2.02 2.11 2.62 1.10

Table 2
The SPLEs of fMRI datasets in resting state brain

Slice2 of SCMC Slice3 of SCMC Slice4 of SCMC Slice2 of SCVC Slice3 of SCVC Slice4 of SCVC

Subject1 0.1782 0.2297 0.2259 0.1754 0.2006 0.1750
Subject2 0.1503 0.1505 0.1516 0.1050 0.1456 0.1749
Subject3 0.2283 0.2150 0.2177 0.2206 0.2263 0.2246
Subject4 0.2774 0.2694 0.2562 0.2494 0.2499 0.2428
Subject5 0.2030 0.2361 0.2520 0.2784 0.2571 0.2764
Subject6 0.1708 0.1834 0.2601 0.1694 0.1820 0.1978
Subject7 0.2133 0.2261 0.2488 0.2523 0.2514 0.2347
Subject8 0.1621 0.1940 0.1889 0.1971 0.1930 0.2107
Subject9 0.2451 0.2540 0.2306 0.2571 0.2614 0.2593

X. Xie et al. / Applied Mathematics and Computation 205 (2008) 19–25 23
way [18]: first, compute the Fourier transform (FT) of the original data. Usually, the Fourier spectrum of the original data has
complex amplitude at each frequency. Second, randomize the phases of the Fourier spectrum. Each complex amplitude of the
Fourier spectrum is multiplied by ei/, where / is independently chosen from [0,2p] for each frequency. In order for the in-
verse Fourier transform to be real (no imaginary components), the phases of the Fourier spectrum must be symmetrized, so
that /(f) = �/(�f). Then a new complex spectrum in frequency domain can be obtained with the same absolute values as the
Fourier spectrum of original data. Third, generate the surrogate data. The new complex spectrum can be transformed back
into the time domain by the inverse Fourier transform (IFT) and thus the surrogate data, which is a realization of linear sto-
chastic process with the same power spectrum as the original data, can be obtained.

To test nonlinearity of the fMRI dataset, 29 surrogate datasets (p < 0.05) were generated with the same power spectrum as
the fMRI dataset and also calculated the SPLEs by use of the same method. Fig. 4 shows the time evolutions of the SPLEs for
the fMRI dataset and its 29 surrogate data. There are significant differences to be observed between the fMRI dataset and its
29 surrogate data.
Fig. 4. The SPLEs of raw fMRI dataset and its surrogate datasets.
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4. Discussion

It is demonstrated [25] that one can easily distinguish among fixed points, periodic and chaotic orbits. As embedding
dimension d is increased, the existence of plateau after a certain d = d0 indicates the presence of low-dimensional dynamics.
For small time series, the plateau often shows some slow decay. When deterministic chaos is present, a characteristic rate of
decay is observed: ks(d) � ks(d) 6 0.01. For noisy time series or periodic time series, no such plateau can be obtained. In Fig. 2,
the existence of plateau as d increases shows that the fluctuation of fMRI data in resting state brain is neither noise, nor the
periodic signal. Therefore the fluctuations of fMRI data in resting state brain cannot be fully attributed to NMR noise.

In order to test nonlinearity, the SPLE was utilized as the discriminating statistic. A surrogate data method was used to
verify the characteristics of resting state fMRI datasets. The results of significant difference between the fMRI datasets and
their surrogate datasets lead us to conclude that the fluctuations of resting state fMRI datasets of human brain are: (1) not
filtered noise; (2) not linear. We could positively show that nonlinear behavior presents in our data. In other words, dynam-
ics in resting state fMRI datasets is nonlinear, at least in our experiment. Therefore, it is shown again that fluctuations of fMRI
dataset in resting state brain (absence of explicit brain activation) cannot be fully attributed to NMR noise and that the noise
structure of the fMRI data may provide insights into the brain. Significant difference between the fMRI datasets and their
surrogate datasets can also exhibit some determinism in the resting state brain. So the resting state of brain conveys valuable
information on basal neural activity. This is consistent with the recent reports [23,26].

For the formalism such as those used in this paper, a full study of regular lattices has shown (for several dimensions) the
robustness of low-dimensional dynamics emerging from local disorder. In this sense, the collective behavior is shown to be
robust with respect to external noise, small changes in the local dynamics and modification in the initial and boundary con-
ditions. In these situations, averages over many short local orbits are expected to yield equivalent information [25]. The
dynamics at short temporal scales can be characterized with the aid of Spatiotemporal Lyapunov Exponent. The fact that
no significant temporal variation of the SPLEs is observed exhibits that there is brief dynamics stability in the resting state
brain.

According to the chaotic theory [27], the Lyapunov Exponents are related to the average rates of convergence and/or
divergence of nearby trajectories in phase space. Systems that exhibit a limit cycle as their attractor extractor exhibit no po-
sitive Lyapunov exponents, and thus periodic or quasiperiodic signals such as cardiac pulsation and respiratory movement
impossibly exhibit any positive Lyapunov exponents. When at least one Lyapunov exponent is positive, then the system at
hand is chaotic, and the initial sphere will evolve to some complex ellipsoid structure reflecting the exponential divergence
of nearby initial conditions along at least one direction on the attractor. This ‘‘sensitivity” to the initial conditions results in
an inability to predict the evolution of trajectory beyond an interval of time. When no positive Lyapunov exponent exists,
then no exponential divergence exists, and thus the long-term predictability of system at hand is guaranteed. In our study,
all SPLEs among different regions of the brain in resting state are positive. This is an important observation showing the fact
that there is a phenomenon of spatiotemporal chaos in the resting state brain. Because positive SPLE reflects the exponential
divergence of nearby initial conditions, the distance between two voxels in phase space increases with time. In other words,
spatiotemporal chaos phenomenon induces correlation between two voxels varying with time. Hence, from the view of
dynamics, the correlation between voxels in the resting state brain is not fixed but varies with time. Namely, it is dynamic.

Fluctuations at very low frequencies (0.1 Hz) in fMRI data of resting state brain are spatially correlated within networks
corresponding to related brain functions. This low frequency correlation has been utilized in the study of functional connec-
tivity and has been shown to reflect pathologic and/or physiologic alterations [7,28–30]. However, spatiotemporal chaos
phenomenon induces the result that correlation between voxels is not fixed and varies with time. Therefore, if there are
functional connections or networks in resting state brain, they are necessarily dynamic. In other words, there are dynamic
connections or networks in resting state brain. This is one of the reasons that there are more than one spatially distinct rest-
ing state networks in a resting state brain dataset [28] and that the nature of the networks can still be debated [31].

Though SPLEs of all subjects are positive, their differences (including TRU) among all subjects in resting state brain are
significant (p < 0.01). A plausible interpretation is that the resting state is an ill-defined mental state because it may vary
both from one subject to another and within the same subject.
5. Conclusion

In this work, the nonlinear dynamics property in resting state human brain is detected by calculating Spatiotemporal
Lyapunov Exponent, which based on the coupled map lattices method, to fMRI datasets. The positive SPLE is confirmed
by a finite embedding dimension which is a measure of the determinism of fMRI dataset in resting state brain. The results
show that spatiotemporal chaos can be detected in resting state human brain. This suggests that the fluctuations in resting
state brain cannot be fully attributed to NMR noise, but can be the spatiotemporal properties inhered in resting state human
brain. In addition, the deterministic nonlinear dynamics can get an estimation of spatiotemporal correlation of resting state
brain, which the correlation between voxels varies with time and there is dynamic functional connection or network in rest-
ing state brain.
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