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a b s t r a c t

Estimating the true dimensionality of the data to determine what is essential in the data is an important

but a difficult problem in fMRI dataset. In this paper, cubic spline interpolation is introduced to detect

the number of essential components in fMRI dataset. By constructing proper interpolation variable,

more reasonable estimation of the coefficient of an autoregressive noise model of order 1 can be made.

performance of the new method incorporating an autoregressive noise model of order 1 with cubic

spline interpolation (AR1CSI) with that of the method based only on an autoregressive noise model of

order 1 (AR1). The results show the AR1CSI method leads to more accurate estimate of the model order

at many circumstances, as illustrated in simulated datasets and real fMRI datasets of resting-state

human brain.

& 2008 Elsevier B.V. All rights reserved.
1. Introduction

Functional magnetic resonance imaging (fMRI) has emerged as
a useful and noninvasive technique for studying the function of
the brain. A typical fMRI dataset consists of a hundred or more 3D
images that represent an indirect (metabolic) measure of neural
activity related to brain process. While the spatial and temporal
resolution allow for an effective exploration of brain metabolism,
the presence of noise and various confounds (physiological
rhythms) makes signal extraction challenging.

Although the input dimensionality of fMRI dataset may
be quite high (e.g., 600 images for 64 voxels�64 voxels�5
slices), the meaningful structure of these data, characterized
by the intrinsic dimensionality, has many fewer independent
degrees of freedom. Dimensionality reduction, namely finding
meaningful low-dimensional structures hidden in their high-
dimensional observations, is an inevitable problem confronted
regularly in dealing with large volumes of high-dimensional data
[16,28,31].

A possible way to solve this problem is to consider that the
fMRI dataset is a mixture of several patterns corrupted by noise.
Detection of such patterns is the goal of principal components
analysis (PCA) [18], independent components analysis (ICA)
ll rights reserved.

m (X. Xie).
[2,9,24], clustering analysis [11,13], and more generally of multi-
variate analyze.

Recently, dimensionality estimation and dimensionality
reduction have generated a great deal of interest. Many methods
are presented to estimate the intrinsic dimensionality (ID) of data
and to reduce the dimensionality of the data. Traditionally,
the methods to estimate the intrinsic dimensionality can be
classified two kinds of approaches, i.e., local methods and global
methods [7]. Local (or topological) methods try to estimate the
topological dimension of the data manifold, such as the vectors
embedded method [12], the near neighbor method [23,32],
topology representing network method [20], and locally linear
embedding method [28], etc. Global methods try to estimate the
ID of a dataset, unfolding the whole dataset in the d-dimensional
space. Unlike local methods that use only the information
contained in the neighborhood of each data sample, global
methods make use of the whole dataset. Projection techniques
are widely used global methods [7]. These methods search for the
best subspace to project the data by minimizing the projection
error, such as PCA, multidimensional scaling methods [26,27], a
measured local metric information method to learn the under-
lying geometry of a dataset [31], and a deep autoencode networks
method [16]. As global methods, fractal-based techniques have
also been successfully applied to estimate the attractor dimension
of the underlying dynamic system generating time series [7,15].
Unlike other global methods, they can provide a non-integer value
for ID estimation [18]. Since fractals are generally characterized by
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a non-integer dimensionality, these methods are called fractal. In
nonlinear dynamics many definitions of fractal dimensions have
been proposed. The Box-Counting and the Correlation dimensions
[8,30] are the most popular.

In addition, there are also several methods based on informa-
tion-theoretic criteria to estimate the dimension from the
eigenspectrum, such as the maximum likelihood extension
method [1], the Minimum Description Length method [25,33], a
Laplace approximation method [22], Bayesian PCA [3,4], and the
Bayesian Information Criterion method [29]. Recently, the Baye-
sian Information Criterion method has been applied to functional
neuroimages acquired during a visual activation study [17].

It is well known that fMRI time series typically are demon-
strated complex and locally variable autocorrelation structure,
even when the data have been acquired with the subject ‘‘at rest’’
[10,21]. There is preliminary evidence that fMRI noise often has
long memory in time, or 1/f spectral properties, meaning it is
positively autocorrelated and there is disproportionate power in
the spectrum at low frequencies [21].

All these methods, including information-theoretic criteria
method, perform virtually identical when the noise model is purely
white. However, using simulated data, it can be shown [10] that none
of these methods provide very accurate dimension estimation when
the correlation of the noise cannot be neglected. Cordes and Nandy
[10] regard the presence of autocorrelations in the noise is the main
reason why the above methods fail, because autocorrelations
decrease the slope (in absolute value) of the likelihood function.

In order to deal with this problem, an empirical method based
on an autoregressive noise model of order 1 (AR1) is introduced to
the problem of detecting robustly the number of components in
fMRI data [10]. However, from our research, it is found by use of
simulations that AR1 method can provide underestimation to the
ID at many circumstances, especially as the number of voxels in
fMRI data is small.

In this paper, by constructing proper interpolation variable, a
method incorporating the autoregressive noise model of order 1
with cubic spline interpolation (AR1CSI) is introduced. In order to
compare AR1CSI method with AR1 method and a fractal-based (FB)
intrinsic dimension estimating method [8], simulated data with a
few signals contaminated by correlative Gaussian noise, and with
different number voxels, temporal size of the data, numbers of
signal, signal-to-noise ratio and the noise model, were used to
estimate the model order. At the same time, the IDs of real resting-
state fMRI dataset in human brain were also estimated using AR1
method, FB method and AR1CSI method, respectively. The results
analyzing the simulated data and real fMRI dataset prove that
AR1CSI method seems to work better for ID estimation and leads to
more accurate ID estimation than the AR1 method and FB method,
no matter what the voxel number, the temporal size of the data, the
signal number and the signal-to-noise ratio are. The ID under-
estimation of AR1 method can be improved by AR1CSI method.
2. Material and methods

2.1. AR noise model of fMRI data and noisy mixing model

It is proved [21] that the noise in fMRI time series is not
uncorrelated but has an autoregressive structure, even when the
data have been acquired when the subject is ‘‘at rest’’. One of the
most successful modeling strategies for fMRI noise G ¼ (g1, g2, y,
gT), T being the number of time points, has been the adoption of
autoregressive, linear time invariant models [14,21] of the form

gt ¼
Xq

i¼1

figt�i þ �t ; �t�Nð0; s2Þ, (1)
where q is the order of the autoregressive AR(q) process and t ¼ 1,
2, y, T denotes time. However, AR models will require many
parameters to account for long-range autocorrelated processes.
Though the variability of autocorrelation among voxels suggests
that it might be suitable to adapt the order of AR process to each
individual time series, which can be automated using model
selection criteria such as the Bayesian information criterion, this is
not always done in practice [21].

Without doubt, for a voxel time series which has a strong
correlation structure, the higher the order of AR model is, the
better the effect will be. For water phantom data and also for
preprocessed real data, when having corrected motion artifacts
and detrended signal drifts, it is proved [10] that modeling the
noise by an AR(1) process seems to work well and leads to
consistent estimates for real and simulated data. The AR(1) model
can be described as

gt ¼ fgt�1 þ �t , (2)

where f is the AR(1) coefficient and et is a random variable with
Gaussian distribution.

The fMRI dataset is a mixture of several patterns corrupted by
noise and can be represented by a noisy linear mixing model. The
noisy linear mixing model [10] for a fMRI dataset with mean
removed can be described as follows:

zi ¼ Asi þ Gi; i ¼ 1;2; . . . ;N, (3)

where zi and si denote the observation and the signal at voxel i

with T time points, respectively. The signals are composed of p

components with zero mean at voxel i. The mixing matrix A is a
T� p dimensional matrix. The vector Gi is the multivariate
correlated Gaussian noise with zero mean. The number of voxels,
i.e. N, is satisfied T/N-g40. Though p, the number of the signal
components, is usually less than T, the observation Z ¼ [z1, y, zN]
is always a matrix of full rank T because the observation is
composed of not only signal, but also noise, and thus the
dimension of the full fMRI dataset is always larger than the
number of biological components [10].

Slightly different from Ref. [10], the signal-to-noise ratio (SNR)
is defined in terms of the eigenvalues of covariance matrix for a
dataset, i.e.

SNR ¼

Pp
i¼1liPT

j¼pþ1lj

 !1=2

, (4)

where li label the first p eigenvalues of the covariance matrix,
which corresponds to signal space of the dataset, and lj is the rest
T�p eigenvalues of the covariance matrix, which is regarded as
noise space.
2.2. ID estimating by AR1CSI method

2.2.1. ID estimating by AR1 method

It is shown [10] that with the conditions of the autoregressive
coefficients fA[0, 0.3] and typical fMRI parameters (N ¼ 20,000,
T ¼ 160), l(k), the kth eigenvalue of the sample eigenvalue
spectrum for AR(1) Gaussian noise, can be fit excellently by an
exponential function l(k) ¼ a e�bk, excluding very small k (ko10)
and very large k (k4T�10) where they deviate from the
exponential behavior. Similarly, coefficients a(f) and b(f) can be
also accurately parameterized by an exponential function follow-
ing aðfÞ ¼ a1 e�b1f and bðfÞ ¼ a2 e�b2f, respectively. Supposing
that the tail eigenvalues of the sample covariance matrix for fMRI
dataset have no contributions to the signals and only serve as the
noise subspace, then they can be used to estimate the AR(1)
coefficient of the corresponding fMRI data.
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Fig. 2. Two exponent functions (l(k) ¼ a e�bk) have the same coefficient b, and the

different coefficient a. The coefficient b ¼ 0.01. The dot–dash line corresponds to

a ¼ 1. The solid line represents a ¼ 4. There is significant difference of the slope

between these two exponent functions.
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To estimate the ID of the data, the AR1 method is carried out by
following steps [10]. First, in order to get the parameterization
bðfÞ ¼ a2 e�b2f, a(f) and b(f) are determined by the eigenvalues
of simulated data with pure AR(1) Gaussian noise and the proper g
(g can easily be determined from real data). Second, the tail
eigenvalue spectrum of the real data is fitted to lðkÞ ¼ ag e�bgk

except for the very last 10 eigenvalues, and thus the coefficients, ag
and bg, can be obtained. Then, the AR(1) coefficient fg can be
estimated by the equality bðfÞ ¼ a2 e�b2f. Third, the tail eigenva-
lues of covariance matrix for the real data are always smaller by a
shift D than the corresponding eigenvalues for simulated pure
AR(1) noise. This is because real data contain not only signal but
also noise, and each time series is normalized by its variance,
however, the corresponding simulated pure AR(1) noise data
only contain noise, and the variance of each time series is also
normalized to one. Thus, the noise eigenvalue spectrum generated
by estimated fg can be properly adjusted by the shift D. (The shift
D can be determined by the tail eigenvalue spectra of both real
data and simulated pure AR(1) noise.) Fourth, the adjusted noise
eigenvalue spectrum for the estimated AR(1) coefficient is then
compared to the eigenvalue spectrum of the real data. The
number of eigenvalues that are larger than the corresponding
adjusted simulated noise eigenvalues and that are before the first
the intersection of two eigenvalue spectra then defines the
dimension of the signal subspace. It is easy to get the ID
estimation by counting the number of eigenvalues that are larger
than the corresponding adjusted simulated noise eigenvalue.

The basis of the AR1 method is that a(f) and b(f) can be
accurately parameterized by an exponential function. Never-
theless, we found that this is not always the case by simulation.
On one hand, simulation results show that neither a(f) against f
nor b(f) against f can always be accurately parameterized by an
exponential function, especially for small voxels number N. As
shown in Fig. 1, when N ¼ 1700, log(a) against f is nonlinear for
fA[0, 0.30] and log(b) against f is the same. This means neither
a(f) against f nor b(f) against f can be accurately fit by
exponential function under this circumstance.

On the other hand, the key of the AR1 method is that the AR(1)
noise spectrum generated by estimated f need to be adjusted so
that it coincides with the tail eigenvalues of the real data [10], i.e.,
the slope of AR(1) noise spectrum also coincides with the slope of
tail eigenvalues for the real data. However, for a exponential
Fig. 1. Logarithm of a typical coefficients a(f) and b(f) for correlated Gaussian noise co

coefficient. The left plot is logarithm of coefficient a, and the right plot is logarithm

accurately fit to exponent functions.
function l(k) ¼ a e�bk, the slope is determined by its derivation

dl
dk
¼ �ab e�bk, (5)

i.e., the slope is determined by not only b, but also a. As shown in
Fig. 2, though their b is the same, there is significant difference of
the slope between two exponent functions because of their
different parameter a. Therefore, we believe that it is not enough
to estimate coefficient f by using only b (ignoring the effect of a)
in AR1 method. In the later of this paper, we will prove that it can
result in underestimating ID of the data.

2.2.2. Cubic spline interpolation

Interpolation is used to estimate the value of a function
between known data points without knowing the actual
function. Cubic spline interpolation [6] is a useful technique to
interpolate between known data points due to its stable and
rresponding to an AR(1) model (600 time dimension, 1700 samples). f is the AR(1)

of coefficient b. The curves are not linear means that both a(f) and b(f) are not
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Table 1
The divided differences for pi based on the conditions data for pi

pi[ ] pi[ , ] pi[ , , ] pi[ , , , ]

ti g(ti)

si

ti g(ti) (g[ti, ti+1]�si)/Dti

g[ti, ti+1] (si+1+si�2g[ti, ti+1])/(Dti)
2

ti+1 g(ti+1) (si+1�g[ti, ti+1])/Dti

si+1

ti+1 g(ti+1)

Note: pi[ ] denotes the zeroth divided differences. pi[ , ] denotes the first divided

differences. pi[ , , ] denotes the second divided differences. pi[ , , , ] denotes the third

divided differences. Dti ¼ ti+1�ti.
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smooth characteristics. They are generally well behaved and
continuous up to the second order derivative at the data points.

One of the most useful and well-known classes of functions,
which map a set of real numbers into itself, is the class of
algebraic polynomials. Polynomials are used for approximation
because they can be evaluated, differentiated, and integrated
easily and in finitely many steps using just the basic arithmetic
operations of addition, subtraction and multiplication [19]. A
polynomial of order n is a function of the form

pðxÞ ¼ a1 þ a2xþ � � � þ anxn�1, (6)

and Pn denotes the set or linear space of all polynomials of order
n. Let t1, t2, y,tn be a sequence of n distinct points. For an
arbitrary given function g, the expressions g[ti, ti+1, y, ti+k] are
called divided differences of g [6]. The zeroth divided difference
with respect to ti, denoted g[ti], is simply the value of g at ti:
g[ti] ¼ g(ti). The remaining divided differences are defined
inductively. The first divided difference of g with respect to ti,
ti+1 is denoted g[ti, ti+1] and is defined as

g½ti; tiþ1� ¼
g½tiþ1� � g½ti�

tiþ1 � ti
. (7)

Similarly, after the (k�1)st divided differences, g[ti, ti+1, y,
ti+k�1] and g[ti+1, ti+2, y, ti+k], have been determined, the kth
divided difference relative to ti, ti+1, ti+2, y, ti+k is given by

g½ti; tiþ1; . . . ; tiþk�1; tiþk�

¼
g½tiþ1; . . . ; tiþk�1; tiþk� � g½ti; tiþ1; . . . ; tiþk�1�

tiþk � ti
. (8)

With this notation, the nth Lagrange polynomial pn(x), which
agrees with the function g at the distinct number t1, t2, y, tn, can
be written as

pnðxÞ ¼
Xn

k¼1

g½t1; . . . ; tk�ðx� t1Þ � � � ðx� tk�1Þ. (9)

This equation is also known as Newton’s interpolation polynomial
[19].

There are many methods to realize interpolation. Piecewise-
polynomial approximation [6] is an alterative approach,
which is to divide the interval into a collection of subintervals
and construct a different approximating polynomial on each
subinterval.

Given the data g(t1), g(t2), y, g(tn) with a ¼ t1ot2o?
otn ¼ b, which consists of joining a set of data points {(t1,
g(t1)), (t2, g(t2)), y, (tn, g(tn))}, a piecewise cubic interpolant f to g

is constructed as follows [5]. On each interval [ti,ti+1], f agrees
with some polynomial pi of order 4,

f ðxÞ ¼ piðxÞ for tipxptiþ1 for some pi 2 P4,

i ¼ 1;2; . . . ;n� 1. (10)

The ith polynomial piece pi is made to satisfy the conditions:

piðtiÞ ¼ gðtiÞ; piðtiþ1Þ ¼ gðtiþ1Þ; p0iðtiÞ ¼ si,

p0iðtiþ1Þ ¼ siþ1; i ¼ 1;2; . . . ;n� 1. (11)

Here, s1, s2, y, sn are free parameters. The resulting piecewise
cubic function f agrees with g at t1, t2, y, tn, and is in C(1)[a, b], i.e.,
is continuous and has a continuous first derivative on [a, b],
regardless of how we choose the free ‘‘slopes’’ si.

In order to compute the coefficients of ith polynomial piece pi,
its Newton form are used

piðxÞ ¼ piðtiÞ þ ðx� tiÞpi½ti; ti� þ ðx� tiÞ
2pi½ti; ti; tiþ1�

þ ðx� tiÞ
2
ðx� tiþ1Þpi½ti; ti; tiþ1; tiþ1�. (12)

Its coefficients are determined from a divided difference table
(Table 1) [5] for pi based on the conditions data for pi.
For cubic spline interpolation, the free slopes s2, y, sn�1 are
determined from the condition that f should be twice continu-
ously differentiable [5,6], i.e., so that f has also a continuous
curvature. This gives the conditions that, for i ¼ 2, y, n�1,

p00i�1ðtiÞ ¼ p00i ðtiÞ, (13)

supposing that the two remaining free-parameters s1 and sn have
been chosen somehow, we now have a tridiagonal linear system of
n�2 equations for the n�2 unknowns s2, y, sn�1 which is strictly
row diagonally dominant. Hence, the system has exactly one
solution.

The free-parameters s1 and sn can be obtained by boundary
condition, including free or natural boundary and clamped
boundary, etc. [6]. If nothing is known about end point derivatives,
then the ‘‘not-a-knot’’ condition [5] should be tried. Here, we
use the ‘‘not-a-knot’’ boundary condition, which s1 and sn are
selected so that p1 ¼ p2 and pn�2 ¼ pn�1. This requires that f0 00 be
continuous across t2 and tn�1.

Before estimating the autoregressive coefficient f using cubic
spline interpolation method, a very important thing we should do
is to construct interpolation variable x. To make the eigenvalues of
AR(1) noise coinciding with the tail eigenvalues of the data after
shifted, x should be identical with the slope of the tail eigenvalues
(i.e. the derivation of the tail eigenvalues shown in formula (5)).
However, in order to let interpolation work properly, x must be
monotonically increasing or decreasing. Though both a and b are
monotonically increasing with f, ab e�bk can break down the
monotonic property and make the cubic spline interpolation fail.
For keeping the monotonic property of x, we consider to replace
ab e�bk with ab ebk as variable x in this paper.
2.2.3. ID estimating by AR1CSI method

The algorithm of estimating the ID by AR1CSI method carries
out as the following:
�
 Step 1. Construct (ab ebk
¼ f(f),f) by pure noise simulation

data.
The a(f) and b(f) are constructed by the eigenvalue spectrum
of the covariance matrix for the simulation data of pure
Gaussian noise with AR(1) covariance structure. The simula-
tion data has the same T and N (g-T/N) as the corresponding
fMRI data. Thus some pairs of discrete a(f) against f and b(f)
against f are obtained. Therefore, a set of data points
(ab ebk

¼ f(f),f) can be constructed from a(f) and b(f).

�
 Step 2. Determine the proper fg corresponding to fMRI data.

In order to determine the proper fg corresponding to fMRI
data, the eigenvalue spectrum of real fMRI data (all voxel time
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series were detrended) is calculated. The tail eigenvalues of
real fMRI data are fitted tolðkÞ ¼ ag e�bgk except for the very last
10 eigenvalues (due to the same reason as in AR1 method), and
thus the coefficients, namely ag and bg, can be obtained. Then,
unlike the AR1 method that uses only the coefficient bg to
estimate the coefficient fg, the proper fg corresponding to
fMRI data, which is also the AR(1) coefficient, can be calculated
by use of cubic spline interpolation method based on the
equality ab ebk

¼ f(f).

�
 Step 3. Adjust the eigenvalue spectrum of the simulated AR(1)

noise data.
With the proper coefficient fg estimated from fMRI data in
Step 2, the simulated pure AR(1) noise data are generated again
using the same T and N as the corresponding fMRI data. Due to
the same reason as in AR1 method, the tail eigenvalues for
spectrum of real fMRI data are also a shift D smaller than the
corresponding eigenvalues of the simulated pure AR(1) noise.
The shift D is also determined from the tail spectrum, and thus
the noise eigenvalue spectrum can be properly adjusted by the
shift D. Then, the adjusted eigenvalue spectrum of the
simulated pure AR(1) noise data is compared to the eigenvalue
spectrum of corresponding fMRI data.

�
 Step 4. Estimate the intrinsic dimensionality.

After adjusting the eigenvalue spectrum of the simulated pure
AR(1) noise data, the number of eigenvalues of real fMRI data
that are larger than the corresponding adjusted eigenvalues of
simulated pure AR(1) noise and that are before the first
intersection of two eigenvalue spectra defines the dimension of
the signal space as AR1 method does [10]. We can get the
estimation of the intrinsic dimensionality of the real fMRI data
by counting the number of those eigenvalues that are larger
than the corresponding adjusted eigenvalues of simulated pure
AR(1) noise from k ¼ 1 to the first intersection between the
eigenvalue spectrum of the real fMRI data and the adjusted
eigenvalue spectrum of the simulated pure AR(1) noise data.

2.2.4. Effectiveness analysis of AR1CSI method

Suppose that the real dataset comprises p signal components
and its tail eigenvalues of the covariance matrix can be fit by an
exponent function l0(k) ¼ a e�bk, and k ¼ p+1, p+2, y, T; the AR(1)
coefficient fg can then be determined by using AR1 (using only b)
and AR1CSI (using ab ebk) method, respectively. The corresponding
simulated AR(1) noise datasets can be generated by using the
estimated fg. If the estimation is accurate enough, the eigenvalues
for simulated AR(1) noise data by using the fg estimated by AR1
method can be fit by an exponent function l2(k) ¼ a00 e�bk, which
has the same b as the real dataset. At the same time, the
eigenvalues for simulated AR(1) noise data by using the fg

estimated by AR1CSI method can also be fit by an exponent
function l1(k) ¼ a0 e�b0k, which holds a0b0 eb0k

¼ ab ebk. For l1(k)
and l2(k), the domain of definition is k ¼ 1, 2, y, T. In order to
make comparison easy, l0(k) is also extended to k ¼ 1, 2, y, T

following the exponent function l0(k) ¼ a e�bk.
Because of normalization, the eigenvalues of the covariance

matrices form the pattern

T ¼
XT

k¼1

a00 e�bk ¼
XT

k¼1

a0 e�b0k4
XT

k¼1

a e�bk. (14)

Lemma. If formula (14) can been held by three exponent
functions l0(k) ¼ a e�bk, l1(k) ¼ a0 e�b’k and l2(k) ¼ a00 e�bk with
a0b0 eb0k

¼ ab ebk, k ¼ 1, 2, y, T, then we have
(1)
 b0ob and aoa0oa00;

(2)
 ab e�bioa0b0 e�b0 i and ab e�bio a00b e�bi, 8iA[1, T].
Proof. (1) Suppose b0Xb, then we have

1
b0 eb0 ðkþiÞ

p 1
b ebðkþiÞ. Since a0b0 eb0k

¼ ab ebk, thus

XT

i¼1

a0 e�b0 i ¼
XT

i¼1

ab ebk

a0b0 eb0k
a0 e�b0 i ¼

XT

i¼1

ab ebk

b0 eb0k
e�b0 i

p
XT

i¼1

ab ebk

b ebk
e�bi ¼

XT

i¼1

a e�bi.

This contradicts our hypothesis, so b0ob.
Since a0b0 eb0k

¼ ab ebk, then aoa0.
If a0Xa00, then a00 e�bipa0 e�bi. Since b0ob, we have a00 e�bipa0

e�bioa0 e�b0i. Thus,

XT

k¼1

a00 e�bko
XT

k¼1

a0 e�b0k.

This also contradicts with our hypothesis, so a0oa00. Since aoa0,
thus aoa0oa00.

(2) Since b0ob and a0b0 eb0k
¼ ab ebk, thus ab e�bi

¼

ab ebk e�bk e�bi
¼ a0b0 eb0k e�bk e�bioa0b0 eb0k e�b0k e�b0 i

¼ a0b0 e�b0i.
Due to aoa00, abe�bioa00b e�bi.&
Since the real dataset comprises p signal components, its tail

eigenvalues of the covariance matrix is composed of the last T�p

eigenvalues.

Theorem 1. If formula (14) can been held by the exponent
functions l0(k) ¼ a e�bk, l1(k) ¼ a0 e�b0k with a0b0 eb0k

¼ ab ebk,
k ¼ 1, 2y, T, as well as

D ¼
1

T � p

XT

i¼pþ1

ða0 e�b0i � a e�biÞ. (15)

Then, the inequality

a0 e�b0 ðpþ1Þ � D4a e�bðpþ1Þ (16)

can hold.

Proof. Constructing a function b(x) ¼ a0 e�b0x
�a e�bx with

(0oxpT), then its derivation b0(x) ¼ ab e�bx
�a0b0 e�b0x. From

Lemma, we have b0(x)o0 within (0oxpT). Thus, b(x) is a function
of monotonous decrement at the scope of xA(0, T]. Therefore, for
b(k) ¼ a0 e�b0k

�a e�bk and k ¼ 1, 2, y, T, the mean of the last T�p

terms, which is also the shift D used to adjust the pure AR(1) noise
spectrum, is less than the term b(p+1). Thus, we have the
inequality (17).

D ¼
1

T � p

XT

i¼pþ1

ða0 e�b0i � a e�biÞoa0 e�b0 ðpþ1Þ � a e�bðpþ1Þ. (17)

So, a0 e�b0(p+1)
�D4a e�b(p+1).&

Theorem 1 means that after adjusted, the eigenvalue l1(p+1)�D
of covariance matrix for simulated pure AR(1) noise, which
generated using fg estimated by AR1CSI, is still larger than
l0(p+1) of real data.

Theorem 2. If formula (14) can been held by the exponent
functions l0(k) ¼ a e�bk, l2(k) ¼ a00b e�bk, k ¼ 1, 2, y, T, as well as

D00 ¼
1

T � p

XT

i¼pþ1

ða00 e�bi � a e�biÞ. (18)

Then, the inequality

a00 e�bðpþ1Þ � D004a e�bðpþ1Þ (19)

can hold.
The proof of Theorem 2 is similar to the proof of Theorem 1.

Theorem 2 implies that after adjusted, the eigenvalue l2(p+1)�D00
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of covariance matrix for simulated pure AR(1) noise, which
generated using fg estimated by AR1, is also larger than l0(p+1)
of real data.

For simplifying the problem, assume that AR1 method has the
same shift D as AR1CSI method, i.e. DED00. Because of normal-
ization, the sum of all eigenvalues of simulated pure AR(1) noise is
T, i.e.

T ¼
XT

k¼1

a00 e�bk ¼ a00 e�b 1� e�bT

1� e�b
. (20)

If b is very small and T is large enough, Eq. (20) can be simplified
to TEa00b�1. Therefore, the eigenvalue l2(p+1) of AR1 can be
simplified to

l2ðpþ 1Þ ¼ a00 e�ðpþ1Þb � Tb e�ðpþ1Þb. (21)

Construct the function r(x) ¼ x e�(p+1)x for x40. Its derivation
r0(x) ¼ e�(p+1)x

�x(p+1) e�(p+1)x. As (p+1)xo1, the r0(x)40 and thus
r(x) is a function of monotonous increment. Due to b0ob, we can
obtain

a00 e�ðpþ1Þb4a0 e�ðpþ1Þb0 . (22)

For fMRI data, the condition (p+1)bo1 is satisfied easily.
Combining inequalities (16) and (22), it is clear that after adjusted,
both the eigenvalue l2(p+1)�D and l1(p+1)�D of covariance
matrix for simulated pure AR(1) noise are larger than l0(p+1) of
the real data. Furthermore, the eigenvalue l1(p+1)�D of AR1CSI
method is located between the eigenvalue l0(p+1) of the real
dataset and l2(p+1)�D of AR1 method. This means that the ID
estimated by AR1CSI is closer to the true number of signal
components than that estimated by AR1.

2.3. Data acquisition and procedure

2.3.1. Simulated data

To evaluate the performance of AR1CSI method, simulated data
with a few signals contaminated by Gaussian noise with
autocorrelation structure were generated to estimate the model
order by AR1 method, FB method and AR1CSI method, respec-
tively. With fixed autoregressive coefficient fA[0, 0.5], the
simulated data were constructed from a few orthogonal signals,
Fig. 3. Eigenvalues for simulated data with correlated noise corresponding to AR(1) mo

broken line corresponds to the pure noise spectrum which coefficient f is estimated

coefficient f is estimated by AR1CSI method. All time series were normalized by their va

and the left plot is the eigenvalue spectrum of pure AR(1) noise but not tail-adjusted.
mixed by an orthogonal mixtures matrix and added AR(1)
Gaussian noise. All simulated data were composed of 20,000 or
2000 voxels. The number of time frames was from 150 to 600.
Prior to analysis, each voxel time series was normalized by its
variance. Fig. 3 shows the corresponding eigenvalue spectrum of
the covariance matrix for simulated data with p ¼ 50, f ¼ 0.2 and
SNR ¼ 2. The pure AR(1) noise eigenvalues, which coefficients (fg)
were estimated by AR1 and AR1CSI method, respectively, are also
plotted. The left plot includes the noise eigenvalue spectrum
generated from the estimated AR(1) coefficient before adjusted
and the right plot includes the noise eigenvalue spectrum after
adjusted.

As shown in Fig. 3, due to sufficient SNR used in the simulation,
the slope difference is significant between the large eigenvalues
corresponding to the signals and the small eigenvalues regarded
as the noise region. Thus a natural break forms between
the large and small eigenvalues. The eigenvalues corresponding
to the signals are indicated by this natural break [10] and their
number can be count through this break. On the other hand,
variance normalization brings about the result that the tail
eigenvalues of spectrum for data become smaller than the
corresponding eigenvalues for the pure AR(1) noise, and thus
the eigenvalue spectrum of the pure AR(1) noise data need
to be adjusted. After adjusting the noise eigenvalues, the
intersection of the data eigenvalue spectrum with the pure
AR(1) noise eigenvalue spectrum will provide the correct number
of signals [10].

2.3.2. fMRI dataset

Gradient-echo echo planar imaging (EPI) data were acquired
from nine healthy volunteers in resting-state with closing eyes,
stopping thinking if any idea comes up. The data was obtained on
a 1.5 T PHILIPS MEDICAL SYSTEMS Gyroscan NT (TR ¼ 700 ms, flip
angle ¼ 701 and FOV ¼ 23 cm, with five transection slices covering
the visual cortex and other five transection slices covering the
motor cortex, 5 mm slice thickness, matrix size: 64�64). After
discarding initial scans (to allow for magnetic saturation effects)
each time series is comprised of 600 scan images.

The data were preprocessed with using SPM2 (http://www.
fil.ion.ucl.ac.uk/spm/software/spm2) software. The time series
were slice-time corrected, corrected differences in image
de. The dot–dash line represents 50 signals corrupted by noise with a SNR ¼ 2. The

by AR1 method. The solid line corresponds to the pure noise spectrum which

riances. The right plot is the tail-adjusted eigenvalue spectrum of pure AR(1) noise,

http://www.fil.ion.ucl.ac.uk/spm/software/spm2
http://www.fil.ion.ucl.ac.uk/spm/software/spm2
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acquisition time between slices, and realigned, corrected for
movement-related effects. A mask containing only brain voxels
was generated by threshold. In order to retain as much informa-
tion as possible, no further preprocess was done.
3. Results and discussion

Fig. 4 shows the block diagram of the procedure for estimating
the ID of the fMRI data.

3.1. For simulated data

To compare the results of the ID estimation at various
circumstances, we applied FB, AR1 and AR1CSI method respec-
tively to the simulated data respectively. The results are shown in
Figs. 5–14.

3.1.1. Simulated data as a function of the autoregressive coefficient f
(Figs. 5 and 6)

Fig. 5 shows the comparison of the estimated IDs as a function
of the autoregressive coefficient f between AR1 and AR1CSI
method. Fig. 6 shows the comparison between FB and AR1CSI
method. For 20,000 voxels, AR1CSI method almost produces the
correct estimate of the number of signals. FB method significantly
overestimates the model order. As f close to zero, both AR1 and
Preprocessing 

Constructing 
a(�) and b(�)

Estimating �γ

Estimating intrinsic 
dimensionality 

Detrending and 
Normalizing 
time series 

Estimating
aγ and bγ

Constructing 
x(φ)=abebk

Generating 
AR(1) noise

Calculating 
eigenvalue spectrum

Adjusting 
eigenvalue spectrum

Calculating 
eigenvalue spectrum

fMRI data 

End 

Generating 
AR(1) noise

Obtaining T and N 
from fMRI data

Fig. 4. The block diagram of the procedure for estimating the ID of the fMRI data.
AR1CSI method slightly underestimate the model order. With
increasing noise correlation, AR1 always underestimate the
model order, whereas AR1CSI method retains its stability and
produces an accurate estimate of the model order except
for fo0.08. For 2000 voxels, though both AR1 and AR1CSI
method produce underestimate the model order, the dimension
estimated by AR1CSI method is closer to the correct number of
signals than that by AR1 method. FB method overestimates
the model order at small f, and underestimates the model order
at large f.

3.1.2. Simulated data as a function of the SNR (Figs. 7 and 8)

Fig. 7 shows the comparison of the estimated IDs as a function
of the SNR between AR1 and AR1CSI method. Fig. 8 shows the
comparison between FB and AR1CSI method. For the number of
voxels is 20,000, varying the SNR for data with f ¼ 0.2 shows that
though AR1 provide an underestimate dimensionality even for
data with relatively high SNR whereas AR1CSI method provides a
correct dimensionality estimation and a stable estimation. FB
method produces a significantly overestimates of the model order.
Furthermore, the larger the SNR is, the more serious the
overestimate of the FB method is. For 2000 voxels, both AR1
and AR1CSI method underestimate the model order in most SNR.
AR1CSI method also produces closer dimensionality estimation to
the correct number of signals than AR1 does. FB method
overestimates the model order at large SNR and underestimates
the model order at small SNR.

3.1.3. Simulated data as a function of the temporal size of the data

(Figs. 9 and 10)

Fig. 9 shows the comparison of the estimated IDs as a function
of the temporal size of the data between AR1 and AR1CSI method.
Increasing the temporal size of the data has some effect on the
model order estimate using AR1 and AR1CSI method. For any
temporal size of the data, not only 20,000 voxels but also 2000
voxels, AR1CSI method can also produces almost correct and
stable dimensionality estimate. But for AR1 method, it is shown
again that underestimate dimensionality is obtained at 2000
voxels. When the number of voxels is 20,000, AR1CSI method still
provides better results than AR1 method except T4450, which
provides almost the same results as AR1CSI method. Fig. 10 shows
the comparison between FB and AR1CSI method. For 20,000
voxels, FB method always overestimates the model order.
However, for 2000 voxels, FB always underestimates the number
of signals.

3.1.4. Simulated data as a function of the number of signals (Table 2,

Fig. 11)

Table 2 shows the comparison of the estimated IDs as a
function of the number of signals between AR1 and AR1CSI
method. Fig. 11 shows the comparison between FB and AR1CSI
method. For 20,000 voxels, increasing the number of signals
shows that AR1CSI method is very accurate for the number of
signals from 20 to 70 whereas AR1 method underestimates the
dimensionality of the data. FB method still overestimates
significantly the model order. For 2000 voxels, though both
AR1CSI method and AR1 method underestimate the ID of the data
at most circumstance, AR1CSI method produces a better results
than AR1 method again. FB method overestimates the number of
signals at small number of signals and underestimates the model
order at large number of signals.

3.1.5. Simulated data as a function of the number of voxels (Fig. 12)

Fig. 12 shows the comparison of the estimated IDs as a function
of the number of voxels. The left plot is the comparison between
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Fig. 5. Estimated dimension for simulated data with 50 signals and correlated noise corresponding to AR(1) model as a function of the AR(1) coefficient f. fA[0, 0.3],

T ¼ 160 and SNR ¼ 2. The dot–dash line is the dimension estimated by AR1 method. The solid line represents the dimension estimated by AR1CSI method. The number of

voxels in left plot is 20,000, and the number of voxels in right plot is 2000.

Fig. 6. Estimated dimension for simulated data with 50 signals and correlated noise corresponding to AR(1) model as a function of the AR(1) coefficient f. fA[0, 0.3].

T ¼ 160 and SNR ¼ 2. The dot–dash line is the dimension estimated by FB method. The solid line represents the dimension estimated by AR1CSI method. The number of

voxels in left plot is 20,000, and the number of voxels in right plot is 2000.
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AR1 and AR1CSI method. The right plot is the comparison
between FB and AR1CSI method. Increasing the number of
voxels shows that AR1CSI method is very accurate whereas AR1
method underestimates the dimensionality of the data. When
the number of voxels is more than 4000, AR1CSI method
produces the correct estimate of the number of signals. Even for
a large number of voxels, AR1 method cannot produce a correct
result yet and gives a lower estimation than the correct
dimensionality. FB method underestimates the model order at
small number of voxels, whereas overestimates the number of
signals at large number of voxels. Furthermore, the larger the
number of voxels is, the more serious the overestimate of the FB
method is.
To show the effectiveness of AR1CSI method for a more
complicated noise model, simulated data with a few signals
corrupted by an ARMA(4,4) noise, which follows a A(q)y(t) ¼
C(q)e(t) process, were generated. Here, e(t) stands for white
noise following Gaussian distribution, A(q) denote the AR
coefficients and C(q) label the MA coefficients, and q is
the sign of the shift operator. The average ARMA(4,4)
coefficients were obtained by use of a typical resting-state
data, where A ¼ [1 �0.007 0.025 0.111 �0.073] and C ¼ [1 0.061
0.030 0.089 �0.044] [10]. With ARMA(4,4) noise model and
these coefficients, 20,000 and 2000 noisy time series were
generated and 50 orthogonal signals were added. FB, AR1
and AR1CSI method were then applied to the artificial data
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Fig. 8. Estimated dimension for simulated data with 50 signals and correlated noise corresponding to AR(1) model as a function of the SNR. T ¼ 160 and f ¼ 0.2. The

dot–dash line is the dimension estimated by FB method. The solid line represents the dimension estimated by AR1CSI method. The number of voxels in left plot is 20,000,

and the number of voxels in right plot is 2000.

Fig. 7. Estimated dimension for simulated data with 50 signals and correlated noise corresponding to AR(1) model as a function of the SNR. T ¼ 160 and f ¼ 0.2. The

dot–dash line is the dimension estimated by AR1 method. The solid line represents the dimension estimated by AR1CSI method. The number of voxels in left plot is 20,000,

and the number of voxels in right plot is 2000.

X. Xie et al. / Neurocomputing 72 (2009) 1042–10551050
respectively and the IDs were estimated as a function of the
temporal data size.
3.1.6. ARMA(4,4) model of the noise (Figs. 13 and 14)

Fig. 13 shows the comparison of the estimated IDs as a function
of the temporal size of the data between AR1 and AR1CSI method.
Though AR1 method slight underestimate the dimensionality of
the data at 20,000 voxels, it has a significant underestimate
of the dimensionality at 2000 voxels whereas AR1CSI method
almost produces stable and accurate estimates at 20,000 voxels
and slight underestimate at 2000 voxels. Fig. 14 shows the
comparison between FB and AR1CSI method. As in AR(1) noise
simulated data, FB method always overestimates the number of
signals for 20,000 voxels and underestimates the model order for
2000 voxels.
3.2. For resting-state fMRI dataset

For real fMRI dataset, before we get the ID estimation, we may
do not know where the tail eigenvalues are. Therefore, there is an
important problem how to identify the tail eigenvalues of the
dataset. As discussion before, if p components are correspondence
to signals, the rest of T�p eigenvalues in covariance matrix will be
regard as noise parts, i.e., these T�p eigenvalues comprise tail
eigenvalues. Thus, we can estimate the ID using iteration until the
first number of tail eigenvalue is ID+1. During iteration, it is
important that they should be damped to avoid numerical
oscillations that arise in some circumstances. The first number
of tail eigenvalue is set to the damping factor m times its value
from the previous iteration plus (1�m) times its prescribed
updated value, where the damping factor m is between 0 and 1.
Here, we used the damping factor of m ¼ 0.5.



ARTICLE IN PRESS

Fig. 10. Estimated dimension for simulated data with 50 signals and correlated noise corresponding to AR(1) model as a function of the temporal size of the data. f ¼ 0.2

and SNR ¼ 2. The dot–dash line is the dimension estimated by FB method. The solid line represents the dimension estimated by AR1CSI method. The number of voxels in

left plot is 20,000, and the number of voxels in right plot is 2000.

Fig. 9. Estimated dimension for simulated data with 50 signals and correlated noise corresponding to AR(1) model as a function of the temporal size of the data. f ¼ 0.2

and SNR ¼ 2. The dot–dash line is the dimension estimated by AR1 method. The solid line represents the dimension estimated by AR1CSI method. The number of voxels in

left plot is 20,000, and the number of voxels in right plot is 2000.
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Real resting-state fMRI dataset of nine human brains were
investigated where the results were presented for the dataset
using truncating from the 150 time frames in the front part of
dataset to the full dataset with a temporal size of 600.

A plot of the ID means among all subjects varying with
temporal size of the datasets is shown in Fig. 15. The IDs were
estimated by FB method, AR1 method and AR1CSI method,
respectively, where the AR(1) coefficient was determined from
fitting the tail spectra of the datasets. Fig. 15 shows the ID
estimated by AR1 method is lower than by AR1CSI method. On the
other hand, the ID of the dataset increases with the temporal size
of the datasets. For the temporal size of the datasets To350,
the variation of the ID is rapidly. For the temporal size of the
datasets T4350, the slow rate of curvature of the ID is
observed. For the ID estimated by AR1CSI method, the shifts are
more than 10 units with the temporal size of the datasets T

from 150 to 350. For the temporal size of the datasets T from
350 to 600, however, it appears to be shifted by no more than 6
units. It is identified with the recent report that in real resting-
state fMRI dataset, although the true dimension may increase
when more data are acquired in time, the dimensionality does not
grow about linearly with the number of time frames used in the
data [10]. Moreover, Fig. 15 shows that the IDs estimated by FB
method are much larger than the IDs estimated by AR1 and
AR1CSI method.

Table 3 shows the IDs, estimated by AR1 and AR1SCI method
respectively, of real full fMRI datasets with the temporal size of
600, which were acquired from nine subjects in resting-state.

Though AR1 method is introduced to detect robustly the
number of components [10] in fMRI dataset, it may provide
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Fig. 12. Estimated dimension for simulated data with 50 signals and correlated noise corresponding to AR(1) model as a function of the number of voxels. T ¼ 160, SNR ¼ 2

and f ¼ 0.2. The solid line represents the dimension estimated by AR1CSI method. In the left plot, the dot–dash line is the dimension estimated by AR1 method. In the right

plot, the dot–dash line is the dimension estimated by FB method.

Fig. 11. Estimated dimension for simulated data with a few signals and correlated noise corresponding to AR(1) model as a function of the number of signals. T ¼ 160 and

f ¼ 0.2. The dot–dash line is the dimension estimated by FB method. The solid line represents the dimension estimated by AR1CSI method. The number of voxels in left plot

is 20,000, and the number of voxels in right plot is 2000.
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underestimation to the ID at many circumstances, especially at
the condition of small number of voxels. Fig. 2 shows that
there is difference of the slope between two exponent functions
due to their different parameter a, even they have the same
parameter b. Furthermore, the larger the difference of parameter a

is, the larger the slope difference of two exponent functions
is. Because AR1 method estimates coefficient f using only b

(overlooking the coefficient a), it will overestimate the slope
of eigenvalues for pure AR(1) noise, as shows in Fig. 3. This
is the principal cause for AR1 method to underestimate the ID
of data. For AR1CSI method, estimation of coefficient f is
based on the slope coincidence of the tail eigenvalues
between real data and its correspondent pure AR(1) noise, as
also shows in Fig. 3. It not only takes b into account, but also uses
a to estimate the coefficient f, and thus can estimate the slope of
the AR(1) noise eigenvalues more accurately than AR1 method.
Hence, it can get the more accurate estimation of ID than AR1
method.
4. Conclusions

In this paper, the proper interpolation variable (x ¼ ab ebk) is
constructed and the method incorporating the autoregressive
noise model of order 1 with cubic spline interpolation is
introduced to estimate the ID of fMRI data for human brain.
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Fig. 13. Estimated dimension for simulated data with 50 signals and correlated noise corresponding to an ARMA(4,4) model as a function of the temporal size of the data.

SNR ¼ 2. The dot–dash line is the dimension estimated by AR1 method. The solid line represents the dimension estimated by AR1CSI. The number of voxels in left plot is

20,000, and the number of voxels in right plot is 2000.

Fig. 14. Estimated dimension for simulated data with 50 signals and correlated noise corresponding to an ARMA(4,4) model as a function of the temporal size of the data.

SNR ¼ 2. The dot–dash line is the dimension estimated by FB method. The solid line represents the dimension estimated by AR1CSI. The number of voxels in left plot is

20,000, and the number of voxels in right plot is 2000.

Table 2
Comparison of ID estimated by AR1 and AR1CSI increasing the number of signals at 20,000 voxels and 2000 voxels

The estimated ID and the difference between estimated ID and the number of signals

The number of signals 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80

AR1(20,000) 11 (1) 15 (0) 19 (�1) 24 (�1) 29 (�1) 33 (�2) 38 (�2) 42 (�3) 47 (�3) 51 (�4) 56 (�4) 62 (�3) 67 (�3) 72 (�3) 78 (�2)

AR1CSI(20,000) 11 (1) 16 (1) 20 (0) 25 (0) 30 (0) 35 (0) 40 (0) 45 (0) 50 (0) 55 (0) 60 (0) 65 (0) 70 (0) 76 (1) 85 (5)

AR1(2000) 10 (0) 15 (0) 19 (�1) 22 (�3) 27 (�3) 31 (�4) 36 (�4) 41 (�4) 46 (�4) 51 (�4) 56 (�4) 62 �3 67 (�3) 74 (�1) 79 (�1)

AR1CSI(2000) 11 (1) 15 (0) 20 (0) 24 (�1) 29 (�1) 34 (�1) 39 (�1) 44 (�1) 49 (�1) 53 (�2) 58 (�2) 64 (�1) 69 (�1) 74 (�1) 79 (�1)

Note: The number in the parenthesis is the difference between estimated ID and the number of signals. T ¼ 160, SNR ¼ 2 and f ¼ 0.2.

X. Xie et al. / Neurocomputing 72 (2009) 1042–1055 1053
Unlike the AR1 method that estimates f using only b (neglecting
the effect of coefficient a), the AR1CSI method determines the
autoregressive coefficient f using cubic spline interpolation based
on the function ab ebk

¼ f(f). It is proved by simulated data and
real fMRI dataset that the AR1CSI method seems to work better
and leads to more accurate estimation than the AR1 and FB
method, no matter what the voxel number, the temporal size of
the data, the signal number and the SNR are. Comparing with AR1
and FB method, the performance for estimating the model order
in fMRI dataset can be improved by AR1CSI method.
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Fig. 15. Estimated dimensionality for real resting-state fMRI dataset as a function of the temporal size of the data. The broken line is the dimensionality estimated by FB

method. The dot–dash line is the dimensionality estimated by AR1 method. The solid line represents the dimension estimated by AR1CSI method. The left plot is the mean

dimensionality of slices covering the motor cortex among all subjects and the right plot is the mean dimensionality of slices covering the visual cortex among all subjects.

Table 3
The IDs comparison of fMRI estimated by AR1 and AR1CSI

Subject 1 2 3 4 5 6 7 8 9

AR1 (SCMC) 22 23 25 40 30 25 26 40 40

AR1CSI (SCMC) 32 35 40 49 41 38 37 52 41

AR1 (SCVC) 37 31 46 43 52 45 44 43 42

AR1CSI (SCVC) 46 40 57 56 58 53 60 51 50

Note: SCVC means five transection slices covering the visual cortex and SCMC

means five transection slices covering the motor cortex.
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