
The Answer Is Only the Beginning: Extended Discourse in Chinese and
U.S. Mathematics Classrooms

Meg Schleppenbach and Michelle Perry
University of Illinois at Urbana–Champaign

Kevin F. Miller
University of Michigan

Linda Sims
University of Illinois at Urbana–Champaign

Ge Fang
Chinese Academy of Sciences

The authors investigated the use of a particular discourse practice—continued questioning and discussion
after a correct answer was provided, which they called extended discourse—and examined the frequency
and content of this practice in 17 Chinese and 14 U.S. elementary mathematics classes. They found that
the Chinese classrooms had more, and spent more time in, extended discourse than did the U.S.
classrooms. The content of these episodes differed: The Chinese classrooms focused more on rules and
procedures than did the U.S. classrooms, whereas the U.S. classrooms focused more on computation than
did the Chinese classrooms. These findings shed light on interesting practices of discourse in both
countries and also have implications for current U.S. reforms in mathematics pedagogy.

Keywords: classroom discourse, elementary mathematics learning, Chinese and U.S. elementary class-
rooms

For more than a decade, mathematics educators have been
concerned with how language affects student learning in mathe-
matics and how discourse mediates what counts as mathematical
knowledge for students and teachers in classrooms. Influential
documents such as the National Council of Teachers of Mathe-
matics’s (1991, 2000) Professional Standards for Teaching Math-
ematics and Principles and Standards for School Mathematics
have called for teachers to emphasize communication that allows
students to develop conceptual, or so-called higher level, under-
standing of mathematics. According to these documents and other
research on classroom discourse (e.g., Ball, 1993; Hiebert &
Wearne, 1993; Kazemi, 1998; Kazemi & Stipek, 2001; Lampert,

1990, 1992; O’Conner, 1998; Whitenack & Yackel, 2002), such
high-level communication consists, in large part, of encouraging
students to present mathematical conjectures, pushing students to
both explain and justify their conjectures to their colleagues, and
otherwise promoting debate and discussion of mathematical ideas.
At the very least, this body of work has indicated that extended
conversations about mathematical ideas (as opposed to the simple
statement and acceptance of “correct” answers) provide a neces-
sary, but not sufficient, foundation for such high-level talk (Ball,
1991; Kazemi & Stipek, 2001).

At the same time that interest in classroom discourse in math-
ematics has risen, so has an alarm over the performance of U.S.
students on cross-national comparisons of education. In the past,
cross-national studies (e.g., Crosswhite, Dossey, Swafford, Mc-
Knight, & Cooney, 1985; Stevenson, Chen, & Lee, 1993) typically
took the form of achievement tests, and indeed a robust group of
cross-national studies has indicated that a number of countries
outperform the United States on standardized achievement tests in
mathematics. More recently, large-scale video studies such as the
Third International Mathematics and Science Study have indicated
not only achievement differences between countries but also fairly
substantial cultural differences in teaching practice (Hiebert &
Stigler, 2000; Stigler & Hiebert, 1997, 1999, 2004). Of course,
cultural differences in beliefs and attitudes toward education make
it difficult to assess whether the teaching practices in other coun-
tries are actually responsible for student performance.

Assuming that teaching is, at least partially, culturally embed-
ded (Santagata & Stigler, 2000), it would be difficult or perhaps
even impossible to directly transfer practices from one country to
another. Despite these difficulties, mathematics educators have
become increasingly interested in what the examination of teach-
ing practices allows in terms of the discovery of new and poten-
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tially useful practices, as well as the illumination of currently used
practices that would likely go unnoticed without a comparative
lens to bring them into focus.

The research described in this article combines these current
interests in classroom discourse and cross-cultural comparisons in
mathematics education. Looking at video from U.S. and Chinese
lessons, we examined the frequency and character of extended
conversations around mathematical ideas in these lessons. We
focused on these extended conversations, which we term extended
discourse episodes because they represent moments in the class-
room dialogue in which a student has already provided a correct
answer and is still required to discuss, explain, or justify that
answer. In other words, extended discourse is the forum for the
kinds of “higher level” talk prescribed by mathematics educators
(Kazemi & Stipek, 2001). In this article, we compare how often a
sample of teachers in the United States and China engaged their
students in extended discourse and what the talk during extended
discourse looked like. Using this cross-cultural lens, we hope to
reveal ways that teachers can use extended discourse to promote
higher level thinking in mathematics.

What is Extended Discourse?

In extended discourse, a student’s answer to a question serves as
the beginning to a larger discussion about the mathematical algo-
rithms, rules, and reasoning needed to find that answer. An exam-
ple will help explain the practice.

Teacher: What is the answer?

Student: 5/8 equals 40/64.

Teacher: How did you do it?

Student: 5 multiplied by 8 equals 40, so 8 should be
multiplied the same number of times, and 8
times 8 equals 64.

Teacher: How can you put it more simply? The numer-
ator and the denominator both. . . . ?

Students (together): Multiplied 8 times.

To give context to this practice, we first present two sections
on how looking at extended discourse fits into the larger liter-
ature on the form and content of higher level classroom dis-
course in mathematics. Then, we explain why China makes a
good partner for research into the issue of classroom discourse
in mathematics.

The Form of Extended Discourse

Researchers of sociolinguistics in education have long examined
how the form of classroom conversation limits or expands the
kinds of talk that can occur in a lesson (Cazden, 2001; Gee, 1999;
Mehan, 1979). In his influential work, Learning Lessons, Mehan
(1979) argued that conversations in lessons take the form of
three-part instructional sequences. These sequences include an
initiation statement, a response to that statement, and an evaluation
of the response (I-R-E). Usually, the teacher makes the final,
evaluative statement in the form of a positive remark that indicates
approval of the successful completion of the I-R-E sequence.

However, the teacher is occasionally displeased with the student’s
response and must continue (or extend) the conversation to attain
the successful completion of the I-R-E sequence.

Many researchers have argued that the I-R-E sequence poten-
tially limits the verbal opportunities (and, in some cases, the
thinking opportunities) for students. For instance, Cazden (2001)
defined I-R-E as the traditional form of classroom discourse and
noted that the discourse-intensive classrooms advocated by the
National Council of Teachers of Mathematics and other mathe-
matics educators are based on nontraditional forms of classroom
discourse. In particular, she noted that nontraditional discourse
includes such features as continuing a conversation even after a
correct answer has been given, developing the classroom norm that
providing explanations is as important as providing answers, and
encouraging students to reference and critique each other’s solu-
tion methods.

Continuing this line of thinking, Nassaji and Wells (2000)
further discussed the limits of the I-R-E sequence and how it
could be expanded to move classroom talk beyond the simple
provision and acceptance of correct responses. To begin, Nas-
saji and Wells explained how the I-R-E sequence, in Mehan’s
(1979) view, was continued only when the response element of
the sequence was incorrect. In such cases, the teacher withheld
an evaluation of the answer and instead made verbal moves to
elicit the correct answer from the student, thereby extending the
conversation.

Noting these extended conversations, Nassaji and Wells (2000)
posited that the move following the student response, which is the
evaluation move in the I-R-E sequence, is the turning point of an
instructional sequence. When evaluation of a response is withheld
or is replaced with a different type of follow-up statement, the
sequence carries on. For instance, even when a student response is
correct, the teacher might extend the conversation by making a
follow-up comment or asking for clarification rather than evalu-
ating the response.

Nassaji and Wells (2000) went on to examine the types of
follow-up moves made by teachers after student responses, and
found that the type of initial question was closely related to the
type of follow-up move made after the student response. However,
Nassaji and Wells argued that the type of question did not control
which follow-up move the teacher chose and, in fact, posited that
choosing a follow-up move that extends, rather than concludes, a
sequence may be the teacher’s most important role in the dis-
course.

Moving toward a focus on discourse in mathematics teaching,
Kazemi and Stipek (2001) connected discourse forms to con-
ceptual learning in mathematics. After investigating a number
of fourth- and fifth-grade classrooms, Kazemi and Stipek cat-
alogued several social and sociomathematical norms that were
present in classrooms with a “high press” toward conceptual
learning. One of the sociomathematical norms they linked to
conceptual learning was teachers not only having students
present problem-solving strategies but also pushing students to
explain and justify those strategies. To create opportunities for
these sorts of discussions of problem-solving strategies, Kazemi
and Stipek argued that teachers must engage students in ex-
tended exchanges about mathematics. In short, they argued that
sustained instructional sequences are needed if discourse that
promotes conceptual understanding is to arise, writing, “Sus-
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tained exchanges allow for but do not ensure conceptual think-
ing” (p. 68).

In this study, we focus exclusively on such sustained exchanges,
which we term extended discourse. Extended discourse is essen-
tially an I-R-E sequence that the teacher has extended typically by
withholding evaluation of a correct answer and instead asking the
student follow-up questions. It is important to study extended
discourse because its form makes higher level conversation, or
conversation that supports conceptual understanding, possible. Al-
though these higher level exchanges do not always occur during
extended discourse, this form of discourse is a most likely place for
higher level conversations about mathematical ideas to occur. In
this article, we examine first how frequently our sample of U.S.
and Chinese teachers created this important form of classroom
discourse. In the next section, we explain our basis for looking
more deeply at this discourse for how the content of the extended
discourse episodes may contribute to conceptual understanding.

The Content of Extended Discourse

In addition to looking at the various traditional and nontradi-
tional forms of discourse found in classrooms, research on dis-
course in classrooms has also looked at the content of individual
utterances and statements made by teachers and students. Tradi-
tionally these discourse studies (e.g., Perry, VanderStoep, & Yu,
1993) have taken a number of forms, from counting the number of
words in teacher and student statements (e.g., Miller, Correa, Sims,
Noronha, & Fang, 2005), to classifying the types of questions
asked by teachers (e.g., Hiebert & Wearne, 1993), to looking at the
kinds of knowledge discussed by students (e.g., Lampert, 1992).

In mathematics education in particular, researchers have looked
at what students’ language says about the level of understanding
they have and about the level of understanding they are comfort-
able expressing. As we have already alluded to, discourse special-
ists in mathematics education have frequently examined how dis-
course is used to create and express conceptual, or higher level,
understanding of mathematics. Although only a few studies (e.g.,
Hiebert & Wearne, 1993; Kazemi, 1998) have directly linked the
discourse found in classrooms to increased student achievement
(or, for that matter, increased conceptual understanding), research-
ers have provided several reasons why certain discourses might
promote higher level understanding.

One position is that discourse in which students question
each other and are pushed to explain their thinking parallels the
discourse of expert mathematicians and thus engages students
in doing authentic mathematics (Ball, 1993; Lampert, 1990,
1992). Another argument is that when students present and
discuss their conjectures, their underlying thinking is revealed,
which helps the students to clarify their ideas and perhaps see
mathematical connections they might otherwise have missed
(Brown, Stein, & Forman, 1996; Sfard, 2001a, 2001b; Whit-
enack & Yackel, 2002).

Student discussion of mathematical ideas, coupled with the
use of situation-specific imagery, is also linked to “mathema-
tizing,” or a movement from context-specific problems to ab-
stract mathematical terms and ideas (McClain & Cobb, 1998).
In addition, an emphasis on discourse helps create a community
in which students learn to value learning from other students
(Hiebert et al., 1996) and develop a shared language about what

constitutes legitimate mathematical arguments (O’Conner,
1998). Finally, some researchers interested in equity issues
suggest that a higher level discourse more befits the cultural
communication styles of certain minority groups (Berry, 2003;
Ladson-Billings, 1997).

Although respecting the diverse types of research that could
be performed on the data presented here, we chose to locate our
study of the content of extended discourse on the level of
questions asked by teachers during extended discourse and the
level of answers given by students. By level, we refer to a
taxonomy of mathematical knowledge that verges from compu-
tational to procedural to conceptual (e.g., Hiebert & Lefevre,
1986; Rittle-Johnson & Siegler, 1998; Smith, Desimone, &
Ueno, 2005; Star, 2005). Many mathematics educators (e.g.,
Hatano, 1988; Kilpatrick, Swafford, & Findell, 2001) agree that
mathematics students need to learn both procedural and con-
ceptual knowledge in order to effectively, efficiently, and flex-
ibly solve mathematical problems. However, these researchers
also argue that conceptual knowledge is the higher level knowl-
edge in the sense that strong conceptual knowledge leads to the
ability to use procedures correctly and appropriately, whereas
procedural knowledge alone does not ensure correct use of
those procedures (nor does it ensure understanding of concepts
on which the procedures are based).

In spite of, or perhaps because of, the inevitable integration of
conceptual and procedural knowledge in students with advanced
understanding of mathematics, a large amount of debate persists in
the mathematics community over what exactly constitutes each of
the various levels of mathematical knowledge. Hiebert and Lefevre
(1986) made a distinction of complexity between conceptual and
procedural knowledge. They defined conceptual knowledge as
knowledge rich in relationships, whereas procedural knowledge
was seen as knowledge of rules and procedures for solving math-
ematical problems.

However, as Star (2005) pointed out, these definitions essen-
tially separate conceptual and procedural knowledge on the basis
of the quality of knowledge rather than the type of knowledge. In
Hiebert and Lefevre’s (1986) definition, conceptual knowledge is
inherently deep, whereas procedural knowledge is inherently su-
perficial. Star argued that procedural knowledge can be deep, as
indicated by flexible use of procedures, whereas conceptual
knowledge can be superficial. However, Star did not acknowledge
the role that a student’s conceptual knowledge may indeed play in
making so-called procedural knowledge deep and flexible.

Other definitions have proven useful for this current study. In
particular, Rittle-Johnson and Siegler (1998) defined conceptual
knowledge as “understanding of the principles that govern the
domain and of the interrelations between pieces of knowledge in a
domain” (p. 77). In contrast, procedural knowledge was simply
defined as “action sequences for solving problems” (p. 77). In
addition, in a study of mathematics teachers’ goals for learning,
Smith et al. (2005) placed reasoning, estimation, and conjecture
under the heading of “conceptual learning goals” and placed
memorization and computation under the heading of “procedural
learning goals” (p. 77).

In this study, we drew on these definitions to create our codes
for marking the content of student and teacher statements, but we
also acknowledge the limitations of these definitions and our own
codes. We will explicate the various codes we used to examine the
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content of the extended discourse episodes later in this article.
However, it is worth noting here that we examined the content of
extended discourse by distinguishing between several levels of
mathematical knowledge expressed by students and teachers in
their statements, which we labeled as computation, procedures,
reasoning, and rule recall.

Because it is impossible to see the quality or depth of students’
understanding directly through their discourse, we used discourse
instead to look at the level of abstraction expressed by the students.
We distinguished between procedures and what we call reasoning
by examining the abstraction of the knowledge presented by stu-
dents. Our definition of procedural statements is similar to Rittle-
Johnson and Siegler’s (1998) definition in that procedural state-
ments refer to applying action sequences for solving particular
problems. In contrast, reasoning is defined as conversation about
mathematical ideas on a relatively abstract level. This includes
discussion of why a general principle or procedure is appropriate
for a particular problem, what patterns or relationships exist be-
tween numbers, or why a mathematical rule contains certain ele-
ments. Again, this definition of reasoning is similar to Rittle-
Johnson and Siegler’s definition of conceptual knowledge.
However, we acknowledge that this definition is not similar to
many definitions of conceptual knowledge that emphasize com-
plex webs of knowledge and defer to these differences by calling
our abstraction-based definition reasoning.

We should note that, in our more qualitative analysis of ex-
tended discourse episodes, we connected student and teacher state-
ments with similarly coded content to some of the broader litera-
ture already cited on using discourse to construct different types of
mathematical knowledge. In particular, we analyzed how rule
statements could be expressed informally or formally and how that
contributed to what was viewed as a shared mathematical term in
the classroom (e.g., O’Conner, 1998). We also looked at how
teachers used discussion of procedures and concepts to move
students from thinking about specific problems to thinking about
general mathematical rules and how such moves relate to math-
ematizing (McClain & Cobb, 1998). Finally, we also examined
how students’ reasoning statements could be used to construct
links between procedural and more truly conceptual knowledge
(e.g., Hiebert & Lefevre, 1986; Star, 2005).

In sum, with this article we plan to look at both the frequency of
extended discourse in lessons from two countries and the content,
or level of discussion, found within that extended discourse. By
looking at the frequency of extended discourse, we were able to
see how often teachers in our U.S. and Chinese samples sought to
push students to express their thinking beyond providing correct
answers. By looking at the content of that extended discourse, we
could see whether the use of this form of discourse could be linked
to conversation that promotes conceptual, or higher level, mathe-
matical thinking.

Why Study China?

There are several major structural differences between Chinese
and U.S. schools that impact mathematics education, such as the
influence of a national curriculum on Chinese teaching and the fact
that Chinese elementary mathematics teachers, including the ones
in this study, teach only one subject (Stevenson & Stigler, 1992;
Wong, Han, & Lee, 2004; Yao, 1992). Despite these differences,

we believe there are three major reasons for using Chinese class-
rooms as a venue for understanding the practice of extended
discourse.

First, previous research suggests that urban Chinese mathe-
matics teachers have a deeper and more conceptually connected
understanding of mathematics than do U.S. teachers (Ma,
1999), which may lead to higher level teaching practices (Ball,
1996). This knowledge of mathematical tasks, along with
knowledge of student thinking, is critical for effective teaching
(An, Kulm, & Wu, 2004; Fennema et al., 1996; Fennema,
Franke, Carpenter, & Carey, 1993; Hiebert et al., 1996). Thus,
looking at extended discourse in China should give us insight
about a discourse practice used by teachers to uncover and
extend student understanding.

Second, Chinese educators promote high student achievement
despite some of the same structural factors that are often blamed
for failure in the United States, such as funding issues and diversity
of student ability. Chinese education is given less funding (in
proportion to the country’s gross national product) than it is in the
United States, and this funding is perhaps even more inequitably
divided than in the United States (Hannum & Park, 2002; Steven-
son & Stigler, 1992). Also, despite differing student abilities,
Chinese teachers do not track or group students in the elementary
schools. Sometimes astonishing to U.S. observers is the fact that
Chinese elementary schoolteachers ignore ability differences and
do not segregate students or demand less from them in terms of
achievement (Stevenson & Stigler, 1992). A look at the discourse
in Chinese classrooms may reveal something about how the Chi-
nese teachers manage to reach out to all these students.

The third and final reason for looking at Chinese education is
the existing international comparisons of achievement in mathe-
matics that have long shown that Asian schools are top interna-
tional performers in general and outperform U.S. schools, in par-
ticular, on many mathematical tasks (Fan & Zhu, 2004; Stevenson,
Chen, & Lee, 1993; Stigler & Hiebert, 1997; Stigler & Perry,
1988). Looking directly at the United States and China, Stevenson
et al. (1990) illustrated that, in a comparison of classes of students
in Chicago and Beijing, the lowest scoring Chinese classes re-
ceived better scores than did the highest scoring U.S. classes.
These differences were pervasive on tests of various mathematical
concepts (although it should be noted that other studies, e.g., Cai,
2001; Cai & Silver, 1995, have found that Chinese and U.S.
students perform similarly on process-open or complex word prob-
lems). Although there may be no definitive link between discourse
and this achievement, looking at how high-achieving students
engage in extended discourse allowed us to see the possibilities for
such discourse.

Chinese Mathematics Education and Discourse

An observer of Chinese elementary mathematics lessons would
perhaps first be struck by the emphasis on whole-class instruction.
As Stevenson and Stigler (1992) reported, Chinese teachers are the
leaders of their classes 90% of the time (as compared with 47% of
the time in the United States). However, despite the pervasive
belief that Chinese education is traditional and teacher centered,
this whole-class time is not spent in lecture. Chinese teachers
engage their students in discussion of a small number of difficult
mathematical problems (Stevenson & Stigler, 1992). In doing so,
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Chinese teachers frequently move between having students work
out problems in heterogeneous ability groups and having students
discuss their solution methods during whole-class instruction. As
Huang and Leung (2004) pointed out, Chinese mathematics teach-
ing may be teacher led or traditional in the sense that it is domi-
nated by whole-class teaching, but it could also be characterized as
student-centered in terms of the mathematical conversations held
between teacher and students.

This idea that classroom discourse may be a more accurate
indicator of the true nature of teaching in a culture than are other
factors (such as the amount of time spent in whole-class instruc-
tion) was the impetus for this research and other research on
discourse in Chinese mathematics classrooms. Comparisons of the
discourse of Chinese and U.S. mathematics teachers have been the
focus of several recent studies (Miller et al., 2005; Perry, 2000;
Perry et al., 1993). For example, Perry et al. (1993) used obser-
vational analysis to examine different kinds of question-asking
activities by teachers in first- and fifth-grade classrooms in Japan,
Taiwan, and the United States. They found that U.S. teachers
asked for computing in context, problem-solving strategies, and
conceptual knowledge less frequently than did their Asian coun-
terparts. In addition, qualitative analyses of each question type
supported the notion that U.S. teachers asked these kinds of
questions in less successful ways. For instance, U.S. teachers
provided students with computation problems in which the con-
texts were often irrelevant and confusing to the students. Perry et
al. argued that the use of higher level questioning (defined as
questioning that probes conceptual knowledge), as seen in both
Asian countries, could lead students to develop a deeper and more
conceptual understanding of mathematics.

In a more qualitative study that focused on just one type of
discourse—teacher explanations—Perry (2000) once again found
significant differences across countries. In terms of amount of
explanations, Perry discovered that Japanese and Chinese children
in Taiwan were exposed to more explanations per lesson than were
U.S. children. The content and quality of these explanations also
varied. The explanations in Asian countries were more substantive
and less varied in topic than were the U.S. explanations. Perry
proposed that these differences in explanation frequency and qual-
ity are important because students not only learn more about
mathematics through explanations but also come to understand the
importance of hearing and giving explanations in general.

Finally, Miller et al. (2005) reported that there was more math-
ematics talk in Chinese than in American elementary mathematics
classes and that the division of labor between teachers and students
was quite different. U.S. teachers produced a much greater pro-
portion of mathematical explanations and statements than did their
students, whereas the opposite was the case for Chinese class-
rooms, with students producing most of the mathematical state-
ments and explanations. These findings relate quite directly to this
current study. In particular, although Miller et al. reported that
Chinese students talk more than do their U.S. counterparts, they
did not look at the content and development of the mathematical
discourse. Therefore, we felt a more in-depth analysis of the
content of extended discourse in this study was worthwhile be-
cause it would control for the form of classroom discourse and
would decipher what this mathematical talk entailed.

Method

Data Source

The participating schools for this study included eight schools
from Beijing, China, and six schools from the area around a
midsize university town in the Midwest of the United States. To
study the extended discourse in mathematics lessons in the
schools, we videotaped single lessons. When completed, the data
set included 17 lessons in Chinese mathematics classrooms and 14
lessons in U.S. mathematics classrooms. By design, each teacher
presented a lesson about equivalent or adding fractions. We asked
teachers to inform us when they would be teaching an equivalent
or adding fractions lesson, and we then made arrangements to
capture these lessons on video. We chose equivalent fractions
because of the relatively demanding nature of this topic and its
centrality to the curriculum of late elementary school in both
countries.

In the U.S. schools, 12 different teachers (11 female, 1 male)
participated in the study. These teachers were responsible for
teaching a variety of subjects, including mathematics. Most (11) of
the lessons were in fourth-grade classrooms, and 3 were in fifth-
grade classrooms. All of the lessons were videotaped in the spring
semester. The average class size for the U.S. classes was 22
students.

In the Chinese schools, we observed 15 different teachers (13
female, 2 male). These teachers were responsible for teaching only
mathematics. The classrooms in China were all fifth grade. The
lessons were videotaped in the spring semester of the students’
fifth-grade year. The average class size for the Chinese classes was
55 students.

As indicated in the previous paragraphs, the Chinese students
studied this material a year later than did most of the U.S.
students. Although this age difference might initially appear
problematic, we believe that our use of different grade levels is
justifiable for several reasons. First, our major emphasis was to
uncover and illustrate discourse practices, not to judge one
practice as better than another. For this to be accomplished, it
was essential that all the examined discourse be centered on the
same topic to ensure that a similar depth of discussion was
possible in all the lessons we studied. To match the content
being taught, we found it necessary to videotape fifth graders in
China and fourth graders in the United States. In other words,
the matching of discussion topics was more important than the
matching of discussant ages (Perry, 2000).

In a study that also discussed discourse in fourth- and fifth-grade
classrooms, Kazemi and Stipek (2001) made a similar argument
regarding examining different grade levels. Although they ac-
knowledged their initial concern with making comparisons in
student and teacher talk across grade levels, they said that their
emphasis on analyzing mathematical conversations, as opposed to
evaluating student mathematical knowledge, alleviated such con-
cerns. They wrote, “Although it may be reasonable to expect
fifth-grade students to know more than fourth-grade students, it is
also reasonable to expect that both fourth and fifth graders could
engage in conceptual conversations about mathematics” (p. 62).
We believe this argument is applicable to our own work, for
although the older Chinese students in our study may arguably
have had more mathematical knowledge than did their younger
U.S. counterparts, this knowledge should not have precluded any
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of the students and teachers from engaging in conversations about
all kinds of mathematical knowledge, from computational to con-
ceptual. In fact, the current movement toward discourse-oriented
teaching in mathematics education relies on the fact that no matter
what their age, all elementary school students can and should
engage in conversations that probe conceptual knowledge, and we
believe this study contributes to that movement by looking at
conversations, not achievement.

Second, to further scrutinize our decision to use different grade
levels, we made use of the fact that three of our U.S. classrooms
were fifth-grade classes. To ensure that the differences we discov-
ered were not a product of the age of the students, we looked for
differences between the fourth- and fifth-grade U.S. classes in the
use and content of extended discourse. There were no apparent
differences between the fourth- and fifth-grade U.S. classes on any
of our measures, so we were confident that differences between
U.S. and Chinese classrooms were not likely a result of the
difference in the average age of the students.

In the sampling of schools, we procured as diverse a sample as
we could obtain among the area schools that agreed to be video-
taped for our study. In the U.S. data set, there were significant
demographic differences among the schools. The schools in the
university town itself tended to have a great deal of diversity and
a low overall socioeconomic status. Some rural, low-
socioeconomic-status schools outside of the university town were
used for the study, as were some high-socioeconomic-status
schools in cities surrounding the university town. Although the
schools studied in China were all located in the urban Beijing area,
most of the students in the Chinese classrooms were from either
middle-class or working-class backgrounds.

In addition, we made an effort to account for the prestige of the
schools in both countries. There was some variability in the per-
ceived prestige of the Chinese schools. Two of the schools were
viewed as top-level schools, whereas the others were viewed as
middle-to-high-level schools. The differences in prestige were
virtually the same in the U.S. schools, with most being viewed as
middle to high range, whereas one was viewed as top range.
Despite our best efforts to find a range of prestige levels and
student demographics in the schools used for this study, it is
important to note that these schools are at best representative of the
regions from which they were procured and cannot be said to be
representative of China and the United States as a whole. As we
discuss later, the point of this article is thus not to make cross-
national comparisons but to use data from schools in both the
United States and China to explore and consider a potentially
valuable educational practice.

Finally, in all the classrooms, the teachers and students did
not know what aspects of the lessons were going to be analyzed.
The teachers, students, and parents in both countries were told
that the classes were being videotaped for researchers to exam-
ine how students develop an understanding of mathematics
through their class experience and how videos of classroom
instruction can be used to train teachers. This research thus
represents a portion of a larger project aimed at understanding
differences between U.S. and Chinese mathematics teaching
practices, with the purpose of enabling teachers to improve their
practices.

Analytic Plan

Our method for examining the data was fourfold. First, we used
two quantitative measures, one to examine how frequently ex-
tended discourse occurred in the lessons in our sample and a
second to find differences in student and teacher statements within
these episodes of extended discourse. Next, we used a process
called dynamic time warping to look at the content of the extended
discourse, not in terms of the quantity of each type of statement but
in terms of how the statements were sequenced. Finally, we looked
more qualitatively at the data by examining examples of extended
discourse episodes and discussing subtle differences within them.

The justification for this fourfold method is as follows. The
analytic approach that we followed here was a mixed-methods
approach. As Greene and Caracelli (1997) have suggested, we
followed the dialectical position, which is “shaped by both inter-
pretivist and postpositivist paradigms” (p. 10). We followed this
approach because we felt it was necessary that both generality and
particularity were purposefully addressed (Rocco et al., 2003). The
necessity for addressing issues of generality came from the respon-
sibility to report, for example, the number of occurrences of
extended discourse episodes and any significant differences in
prevalence across the lessons from the two locales. The necessity
for addressing issues of particularity came from the responsibility
to report what these occurrences looked like and how they tran-
spired in distinct classrooms within the two countries we sampled
for our investigation. Furthermore, we note that, especially when
addressing issues cross-culturally, it is critical to provide direct
examples so as to expose our own cultural perspectives
(Moghaddam, Walker, & Harré, 2003).

To deal with examining issues of generality, we first devised a
coding system to categorize different types of extended discourse.
By doing so, we could determine the prevalence of this discourse
practice and also compare the prevalence across countries. Here,
we used inferential statistics, including analysis of variance. We
also computed effect sizes so that the importance of the findings
could be judged.

We relied on analyses of variance because they are robust with
respect to the condition of normality, and some of our data did not
follow neat, normal distributions. In particular, we found that some
of the U.S. classrooms relied on some types of statements consid-
erably more than did other classrooms, whereas we were less likely
to observe uneven distributions in the Chinese classrooms. Also,
because the total lesson length varied, especially within the U.S.
lessons, we conducted analyses on the proportion of time devoted
to extended discourse. Analyses of variance on proportional data
require transformations. Thus, analyses of the amount of time
devoted to extended discourse in both countries were conducted on
arcsine-transformed proportions of time spent on extended dis-
course out of the total time in each lesson. The remaining analyses
were performed on original data (as opposed to transformed data).

In our analyses, we began by examining general characteristics
of extended discourse episodes in both locations. We examined the
frequency, length, and other general quantifiable features of ex-
tended discourse episodes. We next took a look at the content of
extended discourse episodes, and we did so separately for both
teachers and students. Finally, we examined the structure of these
episodes—what came first, second, and so forth—to document
how these episodes proceeded. We relied on a statistical technique,
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dynamic time warping (Kruskal & Liberman, 1983), to help us
identify patterns in the data across episodes of different lengths.
We explain this technique in more detail when we discuss the
results from this analysis.

To deal with examining issues of particularity, we took a close
look at examples of extended discourse. We discuss some of the
distinctive features that we noticed in these episodes and offer
examples of these in Chinese and U.S. lessons. We focused on
three behaviors that transpired differently in the Chinese and U.S.
lessons we observed. In particular, we present examples and dis-
cuss generalized versus context-specific knowledge, components
of reasoning, and rule formality. In these analyses, we seek to look
beyond the codes, which we used to quantify the data, and examine
these episodes more qualitatively, attempting to make sense of
how different types of extended discourse episodes might differ-
entially influence the development of students’ mathematical
knowledge.

In the next two sections, we continue to explicate the coding
systems we used for measuring the amount of extended discourse
in the data and the content of the statements made by students and
teachers during this extended discourse. The other methods used
are discussed further in the Results section.

Identifying Episodes of Extended Discourse

The first step in analyzing the data was finding and marking
episodes of extended discourse, or periods in which one mathe-
matical question was discussed in depth by the students and
teacher. For ease of reading, please note that we term any ex-
changes involving extended discourse episodes, which should not
be confused with the sequences we discuss later in our dynamic
time-warping analysis. Extended discourse episodes were defined
by several criteria. First, an episode must have begun with a
teacher-initiated question or with a student-initiated question that
was accepted by the class for continued discussion. Then, the
episode must have contained at least two substantive (more than
one-word) student responses to the initial question.

The ends of the episodes were marked differently, depending on
the type of initial question asked. When the question was about
manipulating numbers, the episode ended when the numbers in-
volved in the question changed or basically when the numerical
question was altered. When the question was about mathematical
ideas, such as a question about mathematical terms or rules, the
episode ended when the teacher moved to a numerical question or
to an unrelated question about mathematical ideas.

In general, extended discourse episodes began only after a
student gave a complete answer. If the teacher had to prompt a
student to get him or her to report an answer, this prompting was
not included as part of the episode. The criteria for extended
discourse episodes were designed to capture extended discussion
about the answer to one question, not all interactions between
students and teachers. More specific examples of extended dis-
course episodes are presented in the Results section.

As an aside, it is important to note that the only kind of
discourse examined in this study is verbal, spoken discourse.
Although we respect the contributions of nonverbal communica-
tion (e.g. gestures, drawings, written assignments) to discourse and
the creation of mathematical communities in classrooms, the study
of nonverbal language is beyond the scope of this study (see

Flevares & Perry, 2001, for an example of how nonspoken com-
munication is used in elementary mathematics classes). Although
we do not examine this here, we acknowledge that it is likely that
the use of nonverbal forms of communication influences the kinds
of verbal discourse, such as extended discourse, that gets ex-
pressed in classrooms (Ball, 1993).

Coding Content of the Statements in Extended Discourse
Episodes

After locating the extended discourse episodes within each
lesson, we looked closely at what kinds of discourse occurred in
these episodes. We then examined to what extent this discourse
differed between China and the United States. To do so, we coded
individual student and teacher statements within each episode for
their intended functions in the mathematical dialogue. The state-
ment, rather than the utterance, was the unit of analysis for this
study (Bakhtin, Holquist, & Emerson, 1986; Stieglitz & Oehlkers,
1989). We initially considered coding each teacher or student turn,
or what Bakhtin et al. called an “utterance,” as a whole. However,
we decided instead to assign a code to each individual statement
within an utterance. We did so because we wanted to capture
(albeit somewhat crudely) what the teacher or student emphasized
within their utterance. For instance, if a teacher made three state-
ments explaining a mathematical idea and one statement praising
a student, we wanted to capture the relative emphasis on explana-
tion in that utterance by coding each statement, instead of simply
labeling the entire utterance as explanation and praise.

Table 1 shows the nine codes for teacher statements and six
codes for student statements. Each of the six student codes is
matched by a corresponding teacher request code. The three ad-
ditional teacher codes had no corresponding student codes. All
coding was done on a statement-by-statement basis, although both
the original coder and the reliability coder were aware of whether
each statement was spoken by the teacher or by the student. For a
more in-depth explanation of each of the codes, please see the
Appendix.

Reliability

We computed reliability at the following two stages: identifying
extended discourse episodes and identifying the content of these
episodes. To begin, one primary coder identified all the episodes of

Table 1
Content Codes for Function of Teacher and Student Statements
in Extended Discourse

Teacher discourse codes Student discourse codes

1. Request for computation 1. Computation
2. Request for procedure or method 2. Procedure or method
3. Request for reasoning 3. Reasoning
4. Request for rule or term recall 4. Rule or term recall
5. Check for student understanding

and/or agreement
5. Indication of understanding

and/or agreement
6. Request for short answer 6. Short answer
7. Teacher explanation
8. Restating student answer
9. Praise
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extended discourse. We achieved reliability by having another
independent coder examine 25% of these lessons. In this case, the
independent coder examined 4 of the 17 Chinese lessons and 3 of
the 14 U.S. lessons. Simple agreement between coders for locating
episode beginnings and endings was .86, with a Cohen’s Kappa of
.71, which is considered substantial reliability (Cohen, 1960; Lan-
dis & Koch, 1977).

To determine reliability for the content of the statements in the
extended discourse episodes, one coder coded all 31 lessons. As
with identifying episodes, we achieved reliability in content coding
by having another independent coder code 25% of the lessons.
Simple agreement was .81, with a Cohen’s Kappa of .80, which is
considered substantial reliability (Cohen, 1960; Landis & Koch,
1977).

Results

We report the features of extended discourse at several levels.
First, we report basic features of extended discourse, including the
frequency and length of these episodes. Next, we report analyses
of the content of the statements made in these episodes based on
the codes developed explicitly for this investigation. We report the
analyses of the content separately for the teachers and students.
Next, we examine the structure of these episodes by looking at the
sequences of statements from each episode in the Chinese and in
the U.S. lessons. Finally, we present examples of extended dis-
course to give a clear sense of what these episodes looked like and
to discuss the different ways extended discourse could be used to
promote mathematical knowledge.

As a caveat, we remind the reader that the statistics presented in
this section are exploratory in the sense that they are presented as
the basis for discussion of a particular discourse structure. These
statistics confirm and enhance our initial observations of this
discourse structure and thus are used to describe extended dis-
course in this article. But by no means can these statistical results
be generalized to Chinese and U.S. lessons or teachers in general.
The teachers and lessons in this sample were not randomly se-
lected and thus cannot be said to be representative of the nations as
a whole. However, we present statistical analysis here to spur
discussion of the implications of the differences we found within
our small cross-cultural sample.

Frequency, Length, and General Description of Extended
Discourse Episodes

In all, we found 400 extended discourse episodes, with 279
occurring in the Chinese lessons and 121 in the U.S. lessons. To
obtain a general picture of the amount of extended discourse used
in the lessons from both countries, we measured and compared
several features of classroom practice of extended discourse. In
particular, we examined the amount of time spent in extended
discourse per lesson, the number of episodes of extended discourse
per lesson, the length of each episode of extended discourse, and
the number of different students who spoke in each episode of
extended discourse.

Please note that the degrees of freedom used for the statistical
analysis varied in this section. The reason for this was simple but
perhaps not self-evident. The first two sets of results looked at time
spent in extended discourse and number of extended discourse

episodes per lesson. Because these results were averaged for each
of the 31 lessons in our sample, the degrees of freedom were 1
(country) and 29 (lessons). The other two measures were the length
of and number of students participating in each extended discourse
episode. As we found 400 such episodes in this data set, the
degrees of freedom when we were analyzing episodes were 1 and
398.

Time spent in extended discourse. Extended discourse ap-
peared in a significantly higher percentage of the Chinese than the
U.S. lessons. The Chinese classrooms we observed spent about
37% of the lesson time in extended discourse, whereas the U.S.
classes spent only 21% of time in extended discourse, F(1, 29) �
14.47, p � .001, �2 � .335.

Number of extended discourse episodes. We found a signifi-
cant difference in the average number of extended discourse epi-
sodes per lesson in each country, F(1, 29) � 17.29, p � .001, �2 �
.373. On average, each Chinese lesson had 16.4 extended dis-
course episodes, and each U.S. lesson had 8.6.

Length of extended discourse episodes. We found no signifi-
cant differences between countries in the length of extended dis-
course episodes, F(1, 398) � 3.19, p � .05. Both countries’ mean
episode lengths were around 1 min: the Chinese lessons averaged
58.86 s per episode, and the United States lessons averaged 67.37
s per episode.

Number of different students contributing to an episode of
extended discourse. We found no significant differences between
countries in the average number of different students participating
in each episode, F(1, 398) � 2.39, p � .05. The number of
different students participating in each episode of extended dis-
course was 2.37 in the Chinese lessons and 2.62 in the U.S.
lessons.

In sum, we observed more extended discourse in the Chinese
than in the U.S. lessons, but the length of the episodes and the
number of students participating in the episodes did not differ.

Content of Extended Discourse Episodes

Analysis of the content of extended discourse episodes was done
separately for teacher statements and student statements. For anal-
ysis of the content, we began by analyzing the proportion of each
type of statement. We argue that analyses of the proportional data
were necessary because the Chinese lessons had more overall
extended discourse; thus, an analysis of the simple number of each
type of statement would be biased in favor of the Chinese exhib-
iting more of each type of statement. Given the issues with using
analysis of variance on a restricted range, which results from
proportional data, all analyses were conducted on arcsine-
transformed data. Please note that because all the data in this
section were averaged for each of the 31 lessons, the degrees of
freedom were 1 and 29.

Teacher statement codes. We displayed the mean proportion
of each type of teacher statement by country in Table 2, as well as
F values and effect sizes (�2). We include effect sizes here,
measuring the proportion of variance accounted for by being
observed in our China sample versus in the U.S. sample. In
general, effect sizes greater than .3 suggest that the difference
between the countries was large (Cohen, 1969; Glass, McGaw, &
Smith, 1981).
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As can be seen in Table 2, the Chinese teacher statements were
significantly ( p � .05) more frequently coded as requests for
procedures, requests for reasoning, requests for rules or terms, and
checks for understanding or agreement than were the U.S. teacher
statements. The U.S. teacher statements were significantly more
often requests for computation or explanations than were the
Chinese teacher statements. There were no significant differences
by country for request for simple answer, praise, or restatement/
revoicing.

Student statement codes. Not surprisingly, categories of stu-
dent discourse that corresponded to teacher discourse followed
similar patterns. In Table 3 we display the proportion of each
type of student statement by country. The Chinese students
uttered a significantly greater proportion of procedure, reason-
ing, rule/term recall, and indication of understanding or agree-
ment statements than did the U.S. students. In turn, the U.S.
students made computation statements significantly more often
than did the Chinese students. We found no significant differ-
ence between the lessons in each country in the proportion of
short answers.

Examining the Structure of Extended Discourse Episodes
by Looking at Statement Sequences

Although the analysis of student and teacher statements in each
episode of extended discourse illustrates the kinds of questions and
answers most frequently uttered during extended discourse, this

analysis gave us only some idea of what actually went on within
each episode. We knew how many kinds of each statement oc-
curred in extended discourse in general, but we did not know much
about the sequences of these statements. For instance, in two
episodes of extended discourse, we might have counted eight
overall statements, including five computation statements and
three procedural statements. These counts were already included in
our data, but they obscure the sequence these statements formed.
One episode could contain the five computation statements in a
row, whereas the other episode contained the three procedural
statements. Or perhaps one episode could contain two computation
statements followed by one procedural statement, whereas the
other episode contained two procedural statements followed by
three computation statements. A clearer picture was needed of the
sequences of the statements in each extended discourse episode
and when and how these different sequences were qualitatively
different.

To get this general picture, we used a statistical technique, only
recently adapted for exploring classroom discourse, called dy-
namic time warping (Kruskal & Liberman, 1983; Kumar, 2004).
This approach provided us with a way of quantifying similarity
between extended discourse episodes by looking at the “distance”
between the sequences of statements in these episodes on a two-
dimensional scale.

Dynamic time warping was developed for speech recognition
systems as a way of dealing with the problem that different

Table 2
Mean Proportion of Teachers’ Use of Different Types of Statements in Chinese and U. S.
Fractions Lessons

Statement type
China M
(n � 17)

U. S. M
(n � 14) F(1, 29)

Effect size
(�2)

Request for computation .11 .29 28.86** .499
Request for procedure .13 .08 7.76* .211
Request for reasoning .18 .09 15.27** .345
Request for rule/term .08 .01 53.75** .650
Check for understanding .11 .05 15.70** .351
Request for short answer .03 .03 1.76 .057
Praise .08 .06 3.29 .102
Restatement/revoicing .13 .16 0.79 .027
Explanation .14 .24 17.62** .378

* p � .01. ** p � .001.

Table 3
Mean Proportion of Students’ Use of Different Types of Statements in Chinese and U. S.
Fractions Lessons

Statement type
China M
(n � 17)

U. S. M
(n � 14) F(1, 29)

Effect size
(�2)

Computation .21 .55 36.97** .560
Procedure or method .29 .21 4.65* .138
Reasoning .20 .12 7.47* .205
Rule/term recall .16 .03 42.61** .595
Indication of understanding .09 .05 6.85* .191
Short answer .05 .05 1.10 .037

* p � .05. ** p � .001.
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speakers speak at different rates (Myers & Rabiner, 1981). It
provides a measure of how dissimilar or distant two sequences
of events are. To sensibly examine the data, we introduced
some limits on how sequences could be viewed. Following
Kumar, we treated Sequence AABBCC as identical to Sequence
ABCCCC. This algorithm compresses sequences while main-
taining alignment between the sequences (in this example, both
sequences were identical in the sense that they followed an
ABC pattern). Although treating AABBCC as identical to AB-
CCCC was, at some level, arbitrary, we adopted this decision
rule for two reasons. First, we needed some principled way to
combine sequences, to reduce the number of different se-
quences if we were to efficiently describe the world of se-
quences we encountered. When we considered alternatives,
treating, for example, repeating computations but counting ev-
ery time the discourse switched to giving reasons seemed a
reasonable compromise that generally represented the data
while leaving the flow of the discourse intact. Following this
decision rule, the distance between two identical sequences
(including sequences made to be identical, by our decision rule)
would be 0, and the more dissimilar two sequences were, the
greater the distance between them. Essentially, it ignored the
duration of events of the same time, while looking at switches
among different things (be they phonemes or classroom activ-
ities of a particular kind).

In the present investigation, we looked at how the student
statements progressed in each episode of extended discourse and
how similar or dissimilar these sequences of statements were to
each other. Using only the most prevalent student codes (compu-
tation, procedure, rule recall and reasoning), we characterized each
extended discourse episode by the sequence of student responses.

To make the pattern analysis a bit simpler and thus easier to
interpret, we combined the reasoning and rule recall codes because
both types of statements represented a move to more abstract,
generalized thinking about mathematical ideas. As we noted in the
introduction, our codes generally measured the level of abstraction
expressed by the student and not the depth or complexity of the
student’s knowledge. Because of that distinction, we collapsed the
two abstract codes, reasoning and rule recall, in this analysis. Thus,
for instance, if students said, in order, a computation statement,
two process statements, and either a reasoning or a rule recall
statement, the episode exhibited a computation–process–process–
reasoning sequence.

After marking each episode for its distinct sequence of state-
ments, we used the dynamic time-warping technique to find the
distance from every episode to every other episode, resulting in a
400 � 400 distance matrix. As the dynamic time-warping distance
is a measure of dissimilarity between two sequences, all the
diagonal elements of this distance matrix were 0 (each episode was
identical to itself). The matrix was also symmetric about the
diagonal (because, e.g., the distance between Episode D and Ep-
isode E was the same as the distance between Episode E and
Episode D).

To visualize the distance matrix, we used multidimensional
scaling to reduce the distance data to a two-dimensional plot (see
Figure 1). Note that the x- and y- axes of this plot are not
informative because multidimensional scaling preserves only the
distances in the input distance matrix. Thus, two episodes that
contain identical or very similar sequences are placed closer to-
gether on the plot, whereas two dissimilar episodes have a greater
dynamic time-warping distance between them and are further apart
on the plot. For example, episodes that began with computation

Figure 1. Dynamic time-warping plot of the extended discourse episodes in each country.
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statements were fairly similar and thus are close together. Like-
wise, episodes that contained only computation statements are
closer to each other than episodes that contained both computation
and reasoning statements.

In Figure 1, each Chinese lesson is represented by an X and each
U.S. episode is represented by an O on the plot. Although we have
not drawn lines in this plot to distinguish clusters or patterns, we
note that we might have easily included two diagonals, one pro-
ceeding from the southwest corner to the northeast corner and one
proceeding from the northwest corner to the southeast corner.
These diagonals separate the data into four clusters: rule/reasoning
statements (west), computation statements (north), computation
statements followed by processing statements (east), and rule
statements followed by processing statements (south). As illus-
trated in Figure 1, the Chinese classrooms clustered most heavily
in the quadrant that included rule and reasoning statements, and the
U.S. classrooms were essentially absent from this quadrant. The
U.S. classrooms clustered mainly in the quadrant that focused on
computation statements without process statements. Process state-
ments seemed to be secondary in the lessons in both countries;
they appeared to be used in conjunction with rules or computation
and rarely alone.

What the data in Figure 1 suggest is that the Chinese and U.S.
teachers in this study requested different types of knowledge from
their students: The Chinese students were prompted to answer with
rule or reasoning statements, whereas the U.S. students were
prompted to answer with computation statements.

Examples of Extended Discourse

Although the reliance on rule and reasoning statements was
found predominantly in the Chinese lessons and the reliance on
computation statements was found predominantly in the U.S.
lessons, classrooms in both countries used computation, procedure,
rule, and reasoning statements. However, when one looks at ex-
amples of these statements in action, it becomes clear that even
when the Chinese and U.S. teachers were using and eliciting the
same types of statements, the discourse in each country still had a
unique character. In fact, it seems that the teachers in this study
used similar statements in pedagogically different ways. In this
section, we provide illustrations of extended discourse in practice
and discuss how statements made in extended discourse were used
to construct different types of mathematical knowledge.

Generalized versus context-specific knowledge. Close exami-
nation of the use of similarly coded statements in both countries
revealed that the Chinese teachers used discourse around specific
problems to help students develop general mathematical knowl-
edge. This is an interesting practice because the use of language to
move context-specific problems to more abstract rules and math-
ematical ideas is an oft-reported goal for reform discourse (Mc-
Clain & Cobb, 1998). To frame this use of discourse as it appears
in Chinese lessons, first we present an example of an episode in
which a U.S. teacher asked for computation statements only. (See
the computation cluster on the upper right-hand part of Figure 1 to
see where this episode falls in the dynamic time warping analysis.)

Teacher: Well, what about something else that equals 1/4? Student
1? (Request for computation)

Student 1: Um. . .3/16ths? (Computation)

Teacher: 3/16ths. (Restatement) 3 times 4. . .? (Request for com-
putation)

Student 1: That equals 12. (Computation)

Teacher: 3 times 4 would be 12. (Restatement)

Student 1: 3/12ths. (Computation)

Teacher: Can we say 3/12ths, Student 1? (Check for understand-
ing)

Student 1: Yeah. (Indication of understanding)

Teacher: Yeah, that’ll work. (Praise) That follows our pattern.
(Explanation)

In this example, the student used computation statements only to
provide answers and a correction to an answer. The teacher re-
quested computation by prodding the student to the right answer
by saying “3 times 4. . .?” Neither the teacher nor the student
pointed out the more general conceptual reason for the student’s
error of saying 3/16ths, that the numerator and denominator were
multiplied by different numbers (and thus multiplied by a quantity
unequal to 1) or even the procedural idea that because 1 was
multiplied by 3, 4 must also be multiplied by 3. Instead, the teacher
simply helped the student solve this problem without assisting this
student or the class with understanding how to solve similar
problems. In this way, the discourse around computation in this
U.S. lesson was quite context specific.

Now here is an example of a Chinese extended discourse epi-
sode in which the teacher asked for computational statements as
well. (This episode, like the other in this section, also falls in the
computation cluster of Figure 1.)

Teacher: Fill in numbers. Start from that side. Student 1,
the first one. (Request for computation)

Student 1: 12/36 equals 9 over. . . ? (Computation)

Teacher: What? Speak louder. (Request for computa-
tion)

Student 1: Equals 3/9. (Computation)

Teacher: From 36 to 9, the denominator is divided by
what? (Request for computation)

Students (together): 4. (Computation)

Teacher: To keep the fraction unchanged, the numerator
should also be divided by what? (Request for
computation)

Students (together): 4. (Computation)

Teacher: So that is 3/9. (Explanation)

In this example, the Chinese student, like the U.S. student, used
computation statements to give an answer and to give affirmations
of an answer. Similarly, after the answer was given, the teacher
requested computation in a prodding manner, by asking what the
denominator was divided by to get from 36 to 9. However, the
most striking difference between the practices of the U.S. teacher
and the Chinese teacher is illustrated in the last request for com-
putation from the Chinese teacher: “To keep the fraction un-
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changed, the numerator should also be divided by what?” Al-
though this was a computation request and would result only in a
reiteration of the number used in division, the Chinese teacher
reinforced procedural ideas with her question. She reminded the
students that the numerator and denominator must be divided by
the same number, and the answer was provided by the student in
the context of this request for computation. Thus, in this example,
requests for computational statements used by the Chinese teacher
included reference to more generalized procedural thinking than
did the U.S. teacher’s requests and illustrated more of an interest
in eventual mathematizing (McClain & Cobb, 1998).

Components of mathematical reasoning. We have character-
ized the Chinese teachers in this study as valuing rules as a
building block of mathematical knowledge. Yet this belief in rules
extends beyond the common requests for rule recall in the Chinese
episodes. Another interesting aspect of the extended discourse in
the Chinese lessons is that much of the discussion of mathematical
reasoning in the Chinese lessons sought to provoke thinking about
underlying mathematical rules. For instance, consider this episode
from a Chinese classroom in which mathematical reasoning was
elicited from the students. (This episode is located on the left-hand
side of Figure 1, in the rule/reasoning cluster.)

Teacher: This one, is it true? (Request for simple answer)

Students (together): False. (Simple answer)

Teacher: Why false, Student 1? (Request for reasoning)

Student 1: Because the numerator is multiplied by 2,
while the denominator is not. (Reasoning)

Teacher: Yeah, so the fraction? (Request for reasoning)

Student 1: Changes. (Reasoning)

Teacher: It changes. (Restatement)

It appears that, even when requesting reasoning, this Chinese
teacher was still seeking student knowledge of underlying rules. In
particular, the student’s response made use of a rule that we often
observed in the Chinese classrooms, the rationale of consistent
quotient, when he said the reason that the answer was false was
because the numerator and denominator were not multiplied by the
same number. With the teacher’s prompting, the student explained
that the fraction was not equivalent because the numerator and
denominator were multiplied by different numbers. An important
point here is that the Chinese teacher used reasoning to get the
students to talk about the underlying mathematical rule (here, the
rationale of consistent quotient), as did many other Chinese teach-
ers in our study. The Chinese teachers we observed seemed to
place a heavy importance on mathematical rules.

This emphasis on rules found in the Chinese lessons is quite
different from the discourse around reasoning found in the U.S.
classrooms. Interestingly, we found that the teachers in the U.S.
lessons used reasoning to promote more of an integration of
different types of computational and procedural mathematical
knowledge, as illustrated in the following example. (This episode,
like the previous episode in this section, also resides in the rule/
reasoning cluster on the left-hand side of Figure 1).

Teacher: You can either have 1/2 of my candy bar or you
can have 2/4 of my candy bar. Which do you
want? (Request for reasoning)

Student 1: It doesn’t matter. (Reasoning)

Teacher: Why not? (Request for reasoning)

Student 1: Because they are both the same. (Reasoning)

Teacher: They are both the same. (Restatement) Because
1/2 is, everybody. . . ? (Request for reasoning)

Students (together): Equivalent to 2/4. (Reasoning)

Teacher: That’s the whole idea that we’re going to work
with today. (Explanation)

In this example, the students were reasoning verbally about the
amounts 1/2 and 2/4. This reasoning is not easily derived from a
rule but is related to computation, computational procedures, and
reasoning. To reason about this question correctly, the students
used a procedure to compute whether 1/2 and 2/4 were equal or
unequal. They then connected this to a general theory of equiva-
lence. Thus, the U.S. teachers in this study seemed to emphasize
using procedures and computations in complex ways.

The differences between these two examples may illustrate the
distinction Star (2005) made between superficial and deep proce-
dural knowledge. Although the Chinese teacher in this example
sought for the child to essentially repeat and apply knowledge of
a standard rule, the U.S. teacher in this example sought an inte-
gration of procedural knowledge regarding the relationship of 1/2
to 2/4 and more conceptual knowledge about equivalence. This
second example from the U.S. classroom could illustrate more of
an interest in using reasoning to support “deep” procedural knowl-
edge, as opposed to the somewhat more superficial recitation of a
standard rule in conjunction with a mathematical problem.

Formal versus informal rules. As discussed already, the Chi-
nese teachers in this study placed an emphasis on mathematical
rules. In addition, the Chinese teachers placed a great importance
on formal language when discussing these rules. Here is an exam-
ple of this formal use of rules in a discussion of the rationale of
consistent quotient. (In the dynamic time-warping analysis, this
episode is located on the diagonal between the computation cluster
and the rule/reasoning cluster, in the northwest quadrant of Fig-
ure 1.)

Teacher: Please fill in the equation on the blackboard. (Request for
computation)

Student 1: Eight divided by 10 equals 4 divided by 5 equals 12
divided by 15. (Computation)

Teacher: Good. (Praise) What’s your rationale? (Request for rule)

Student 1: It’s based on the rationale of consistent quotient. (Rule)

Teacher: Can you say that in detail? (Request for rule)

Student 1: The quotient will stay consistent if two numbers are
multiplied or divided by the same number. (Rule)

Teacher: Sit down, please. Anything else? You, please. (Request
for rule)
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Student 2: The quotient will stay consistent if two numbers are
multiplied or divided by the same number at the same
time. (Rule)

Teacher: Okay, anything else? You, please. (Request for rule)

Student 3: Except zero. (Rule)

Teacher: Good. (Praise) This is a very important condition. (Ex-
planation) We must pay attention to it. (Explanation)

In contrast, an interesting feature of the discourse in U.S. lessons
is how teachers encouraged students to discuss rules informally, or
in their own words. Here is an example of a U.S. lesson in which
the rationale of consistent quotient was discussed in a more infor-
mal manner. (This episode, like the previous episode in this
section, is located in the northwest quadrant of Figure 1, between
the computation and rule/reasoning clusters.)

Teacher: Now, guys, if we use division to get lowest
terms, what could we have used to get a bigger
equivalent fraction? (Request for procedure)
Multiplication. (Explanation) Six times what
gives you 12? (Request for computation)

Students (together): Two. (Computation)

Teacher: Two. (Restatement) Whatever I do to the de-
nominator, I have to do . . . (Request for rea-
soning)

Students (together): To the numerator. (Reasoning)

Teacher: To the numerator. (Restatement) So 5 times 2 is
10. (Explanation) Your equivalent fraction was
10/12. (Explanation)

In this example, the U.S. teacher seemed interested in promoting
the understanding of a rule as part of solving a problem, not as a
separate, formal entity. Thus, it appears that both the Chinese and
U.S. teacher were interested in knowledge of mathematical rules in
the context of these computation-reasoning episodes, but the Chi-
nese teacher asked for more formalized rules. In this sense, the
teachers in these examples created very different classroom norms
about the kind of language that constitutes an acceptable mathe-
matical argument (O’Conner, 1998). Although the memorization
and recitation of formal rules was required for making an argument
in this example from a Chinese classroom, putting rules “in your
own words” was seen as necessary for legitimate mathematical
argument in the U.S. example.

It should be noted that in this discussion of generalized versus
context-specific knowledge, components of reasoning, and rule
formality, we are not arguing that these findings were universal to
every teacher in a particular country and are certainly not drawing
any conclusions about the superiority of one pedagogical approach
over another. We simply sought to look beyond the codes to
examine these episodes for their unique features and in doing so
found that even similar extended discourse episodes can be used to
construct different ideas about the kinds of mathematical knowl-
edge that are valued in a particular classroom. In the discussion,
we examine how these unique features may benefit mathematical
learning.

Discussion

Our goals for this discussion are to summarize our findings
about the extended discourse in the U.S. and Chinese classrooms
and provide four implications of these findings. First, we summa-
rize what we learned from the Chinese classrooms. In comparison
with the U.S. classrooms, the extended discourse in Chinese class-
rooms was more frequent and included more discussion of proce-
dures, rules, and reasoning. In addition, we found evidence that
many of the extended discourse discussions in Chinese classrooms
connected specific problems to more general mathematical rules,
involved students in expressing their understanding of rules, and
pushed students to express these rules formally.

In contrast, the extended discourse in the U.S. classrooms was
less frequent and included a relatively heavy emphasis on compu-
tation. In addition, some U.S. teachers also appeared to engage
students in computation that was specific to individual problems
and did not push students to connect these problems to more
abstract mathematical ideas. Other examples illustrated that some
U.S. teachers asked students to reason by integrating concepts and
procedures and allowed students to express mathematical rules
informally.

We believe there are at least four potential implications for the
major findings reported in this investigation. First, although the
sample size for this study was too small to support generalizations
about the nature of teaching in China and the United States, we do
believe these findings complement and echo the results of other
cross-national comparisons of mathematics teaching in Asia and
the United States. (e.g., Miller et al., 2005; Perry, 2000; Perry et
al., 1993; Stigler & Hiebert, 1997, 1999, 2004). In all of these
studies, subtle differences in discourse were seen as representative
of larger cultural pedagogical patterns in terms of what types of
mathematical knowledge are emphasized and valued. In our study,
as in the others, the Asian teachers, by their actions, seemed more
interested than were their U.S. counterparts in conversations about
mathematics in general and in discussion about mathematical rules
and concepts more specifically. As the evidence of such differ-
ences continues to accumulate, we are more likely to consider that
classroom discourse plays a significant role in larger cross-cultural
achievement patterns.

Second, we believe that extended discourse, as illustrated and
explicated in this article, can provide a foundation for higher level
exchanges between students, as Kazemi and Stipek (2001) pre-
dicted with their discussion of sustained exchanges as necessary
but not sufficient for promoting conceptual learning. The Chinese
teachers in our study provided an example of using extended
discussions to ask questions about rules and reasoning, while some
of the teachers from both countries in our sample also indicated
how extended discourse could be used to help students develop
deeper procedural knowledge that is integrated with conceptual
knowledge (e.g., Hatano, 1988; Star, 2005) and to move students
from more context-specific to generalized thinking (e.g. McClain
& Cobb, 1998). Although our data do not allow us to interpret
whether extended discourse is truly necessary for conceptual learn-
ing (and we argue that in some cases it is not), we do believe that
engaging students in extended discourse is an important first step
toward developing a discourse-oriented pedagogy that emphasizes
conceptual knowledge. Echoing the emphasis that Nassaji and
Wells (2000) placed on the follow-up move in the I-R-E pattern,
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we believe that simply asking students a follow-up question after
a correct answer may open the door to deeper investigation of the
mathematical content behind a particular problem.

Third, we argue that although extended discourse may allow
higher level mathematical conversations, that is certainly not its
only possible function. As Cazden (2001) posited, using a
particular form of discourse (such as I-R-E) does not necessar-
ily result in a particular kind of instruction. For instance, we
saw in the data from the U.S. lessons that the teachers primarily
used extended discourse as a means for asking students to
engage in computation. Allowing students to practice compu-
tation is also an essential aspect of mathematics teaching and
could usefully be incorporated into extended discourse, but, we
argue, should not be its only function. We also saw some, but
not all, teachers use extended discourse to push students from
context-specific thinking to abstract thinking. In this sense, we
must be careful not to assume that the presence of extended
discourse guarantees better mathematics instruction but should
instead look to how extended discourse is used in excellent
mathematics instruction and how we can encourage teachers to
use extended discourse in similar, better ways.

Finally, although the extended discourse in lessons from both
countries has revealed some intriguing practices, the discourse
in neither country suggests that the pedagogy in these class-
rooms has reached the extent of the reforms proposed by the
National Council of Teachers of Mathematics (1991, 2000) or
the supporters of discourse-intensive teaching (e.g., Ball, 1991,
1993; Berry, 2003; Lampert, 1990, 1992; Whitenack & Yackel,
2002). For instance, the council has heralded discourse prac-
tices as a cornerstone of mathematics education reform, calling
for student participation at the level of “presenting and defend-
ing conjectures” and debating mathematical ideas. Nowhere in
our study did we see clear evidence of this occurring in class-
rooms in the United States or China. Rather, the content of the
extended discourse suggests that, for the majority of questions,
students were being asked to provide specific, predetermined
answers and to justify those answers using standard algorithms;
memorized rules; and, in some cases, mathematical reasoning.
Although we believe such discussions can contribute to greater
student understanding of mathematics, the evidence we saw
regarding the use of extended discourse does not convince us
that this talk is different enough from traditional forms of
discourse (Cazden, 2001) to promote such grander aims as
engaging students in the authentic discussions of mathemati-
cians (Lampert, 1992) or as satisfying the discourse needs of
students from diverse backgrounds (Berry, 2003). No matter
how interesting the practices embedded in extended discourse,
we still have a long way to go toward helping teachers use
discourse forms such as extended discourse to implement the
kinds of pedagogy proposed by the National Council of Teach-
ers of Mathematics.
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Appendix

Explanation of Content Codes for Function of Teacher and Student Statements in Extended
Discourse

Request for Computation (Teacher) or Computation
(Student)

A teacher exhibited a request for computation when he or she
asked for the result of a calculation, such as “What is 9 minus 3?”
or when he or she asked the students to fill in a blank in an
equation or write an answer on the board. A student statement was
coded as computation if it was a brief numerical answer, such as
“3/4” or “1/2 equals 2/4.”

Request for Procedure (Teacher) or Procedure (Student)

A teacher requested procedures or methods by asking students
what they did to produce a certain answer or how they could
illustrate the answer. A student statement was coded as a procedure
statement when the student outlined the mathematical procedure
for producing a certain computation or short answer. For instance,
a student might explain the answer of 1/3 by saying, “I divided
both the numerator and denominator of 3/9 by 3.” A student
statement was also coded as a procedure statement if it was a
method derived using mathematical manipulatives. An example of
this could be a student explaining 1/3 by illustrating one shaded
rectangle out of three rectangles. It is important to note that the
procedures being coded here were not student-invented approaches
to problems but were student applications of school-taught algo-
rithms for solving certain types of problems.

Request for Reasoning (Teacher) or Reasoning (Student)

Requesting reasoning could be characterized in three different
ways. First, teachers could ask students why a certain procedure or
computation was appropriate (e.g., “Why did you multiply by 5?”)
or why a certain aspect of a rule was necessary. Second, teachers
could ask for a pattern or final conclusion about certain numerical
problems (e.g., “What did you notice about those three num-
bers?”). Last, teachers could question what happens when students
apply certain processes (e.g., “What happens when you multiply
the numerator and denominator by the same number?”).

Student reasoning was characterized correspondingly in three
ways. First, a student could provide rule-based reasoning about
mathematical processes. For instance, a student might explain that
he multiplied the numerator and the denominator of a fraction by

3 because “the fraction doesn’t change if the numerator and
denominator are multiplied at the same time by the same number.”
Second, reasoning included noticing or explaining a pattern or
final conclusion about a set of numbers. For example, students
sometimes explored the equivalency of certain fractions. A student
might have found that 1/3, 2/6, and 3/9 were equivalent and
reasoned that “if the multiple is equivalent, the fraction is equiv-
alent.” Finally, reasoning could involve explaining aspects of
rules. The rationale of consistent quotient, for instance, states that
one can multiply the numerator and denominator by any number,
except zero, to keep the fraction the same. It was common for the
students to reason that the phrase “except zero” is in this rationale
because the denominator cannot legally be zero. Thus, the students
explained the necessity of an aspect of a rule.

The type of reasoning being coded here does not correspond
with the idea of conceptual reasoning in mathematics. The reason-
ing code is not intended to indicate inductive, deductive, or intu-
itive reasoning. The code is simply meant to capture statements in
which students discuss certain problems or questions in general-
ized, abstract ways. These abstract responses do indicate ability to
reason about specific problems but do not suggest the presence or
absence of specific conceptual reasoning capabilities.

Request for Rule Recall (Teacher) or Rule Recall
(Student)

Requesting rule recall occurred when the teacher asked for
the names of rules or terms or when the teacher asked for a rule
or term to be described in detail. Rule recall was the code when
students stated the name of a rule or term (such as “Those are
real fractions”), recited the full definition of a memorized rule,
or recited part of the full definition of a memorized rule (such
as “The denominator can be multiplied by any number, except
zero”).

Check for Understanding or Agreement (Teacher) or
Indication of Understanding or Agreement (Student)

A teacher’s statement was coded as a check for understanding or
agreement if it was used to assess student understanding of a
discussion or if it was used to assess student agreement with an
answer or explanation. A check for understanding or agreement

(Appendix continues)
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statement frequently took the simple form of “Do you agree?” or
“Understand?” Students exhibited this understanding or agreement
in indication of understanding or agreement statements such as
“yes” or “I agree.” Students sometimes failed to respond to teacher
checks for understanding, but they rarely said “no” in response to
a check for understanding. If they did respond negatively to a
check for understanding, it was still coded as an indication of
understanding, as it alerted the teacher to a lack of complete
comprehension.

Request for Short Answer (Teacher) or Short Answer
(Student)

Request for short answer was used to code statements in
which teachers posed multiple-choice questions such as true–
false and yes–no. Short answer coded student responses to such
questions.

Teacher Explanation (Teacher)

Teacher explanation was coded when teachers summarized the
mathematical ideas that were discussed within an episode of dis-
course or explained new material within an episode.

Praise (Teacher)

Praise indicated teacher approval of student answers and state-
ments.

Restatement/Revoicing (Teacher)

Restatement or revoicing captured statements in which a teacher
repeated or rephrased a student answer or statement.
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