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A widely used tool for functional magnetic resonance imaging (fMRI)

data analysis, statistical parametric mapping (SPM), is based on the

general linearmodel (GLM). SPM therefore requires a priori knowledge

or specific assumptions about the time courses contributing to signal

changes. In contradistinction, independent component analysis (ICA) is

a data-driven method based on the assumption that the causes of

responses are statistically independent. Here we describe a unified

method, which combines ICA, temporal ICA (tICA), and SPM for

analyzing fMRI data. tICA was applied to fMRI datasets to disclose

independent components, whose number was determined by the

Bayesian information criterion (BIC). The resulting components were

used to construct the design matrix of a GLM. Parameters were

estimated and regionally-specific statistical inferences were made about

activations in the usual way. The sensitivity and specificity were

evaluated using Monte Carlo simulations. The receiver operating

characteristic (ROC) curves indicated that the unified SPM–ICA

method had a better performance. Moreover, SPM–ICA was applied

to fMRI datasets from twelve normal subjects performing left and right

hand movements. The areas identified corresponded to motor (premo-

tor, sensorimotor areas and SMA) areas and were consistently task

related. Part of the frontal lobe, parietal cortex, and cingulate gyrus also

showed transiently task-related responses. The unified method requires

less supervision than the conventional SPM and enables classical

inference about the expression of independent components. Our results

also suggest that the method has a higher sensitivity than SPM analyses.
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Introduction

Statistical parametric mapping (SPM), based on the general

linear model (GLM), is a powerful tool for the analysis of

functional mapping experiments (Friston et al., 1994, 1995a,b). To

measure the magnitude of the blood-oxygenation-level-dependent

(BOLD) signal that is task-specific, neuroimaging data at each

voxel are modeled as a linear combination of explanatory variables

plus a residual error term (Friston et al., 1995c). SPM creates

images of a statistic reflecting dsignificanceT. These SPMs are

interpreted as spatially extended statistical processes that behave

according to the theory of Gaussian fields (Adler, 1981). This

enables the statistical characterization of regionally specific

responses (e.g., using t tests or F tests). This technique makes it

possible to test multiple factors that may contribute to the signal

changes in neuroimaging data.

SPM, by its nature, is model-driven and depends on some

hypotheses about the data. These hypotheses are embodied in

the design matrix of the GLM. Furthermore, it is a univariate

approach, because it characterizes each voxel separately and

performs voxel-wise statistical analyses in parallel. The applica-

tion of the GLM proceeds under two assumptions: normal

distribution and independence of the error terms. In neuro-

imaging, several factors can change the observed data. Some are

related to the BOLD signal changes evoked by specific tasks

and experimental conditions, and some represent noise, originat-

ing from physiological effects (e.g., cardiac and respiratory

effects) or measurements (e.g., thermal noise or noise due to

head movement).

SPM offers several options to model evoked changes in signal

intensities (Della-Maggiore et al., 2002), including a canonical

hemodynamic response function (HRF), which can be supple-

mented with various derivatives. For example, a temporal

derivative that models slight onset differences. These basis

functions are used to create regressors in the design matrix. The

ensuing GLM is a convolution model that depends on knowing the

form of the HRF. However, assumptions about the HRF are not
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always valid. For example, some voxels may show an dinitial dipT
whereas others may not (Grinvald et al., 2000; Lindauer et al.,

2001; Mayhew, 2003; Mayhew et al., 1998, 1999, 2001;

Thompson et al., 2003), and different stimuli may elicit different

kinds of hemodynamic responses (Friston et al., 1998). If the

assumed forms of the HRF, or the stimulus functions it is

convolved with, are incorrect or incomplete, this may result in

biased estimates of the true response (Fadili et al., 2000).

Complementary methods, driven by the data, do not make any

assumption about the causes of responses or the form of the HRF.

They have been applied to functional mapping experiments in the

context of principal component analysis (PCA) (Backfrieder,

1996), Blind source separation (BSS) (Stone, 2001), and clustering

analysis (Balslv et al., 2002; Fadili et al., 2000; Scarth and

McIntyre, 1995). These methods emphasize the intrinsic structure

of the data. An essential difference between these model-free

approaches and SPM is that they are multivariate approaches

accounting for interactions among different regions or voxels. The

effects elicited by physiological or nonphysiological factors are

extracted as dspatial modesT, for example, the principal components

or eigenimages in PCA, or the center and the size of each cluster in

clustering analysis. Among multivariate approaches, independent

component analysis (ICA) has attracted attention recently and

represents a promising approach to characterizing evoked

responses (Calhoun et al., 2001a; McKeown et al., 1998a,b;

Moritz et al., 2003; Sevensen et al., 2002). ICA is capable of

extracting multiple sources such as task-related components,

cardiac and respiratory effects, subject movements, and noise.

The principal advantage, that almost all reports highlight, is its

applicability to cognitive or motor control paradigms where

detailed predictions of brain activity are not available, and no a

priori information about the responses is available.

Nevertheless, there are limitations to purely data-driven

approaches. It is difficult to put these approaches into a statistical

framework that allows one to test the activations against a desired

hypothesis. Furthermore, some basic assumptions of the ICA

model, such as linear summation of the independent components,

may not always be true across different datasets or different

portions of the data. Finally, it lacks the ability to assess the local or

regionally-specific nature of brain responses. An approach called

dHYBICAT has been proposed that allows one to use a priori

hypotheses to guide the analysis (McKeown, 2000). This approach

successively combines independent components to construct task-

related components and then turns to a fully hypothesis-driven

approach. We propose a similar if simpler approach that combines

multivariate ICA with univariate SPM.

SPM is a fairly mature framework for neuroimaging data

analysis and has been applied successfully in many situations. It

would be nice to harness the inferential power of SPM to make

inferences about data-led responses in a regionally-specific

fashion. With an eye to this issue, we augmented SPM with

model-free methods, namely ICA.

First, we describe briefly the theory of GLM and ICA to

provide a background. More detailed treatments can be found in

standard texts. After this, our approach to combining temporal ICA

(tICA) and GLM is presented. In our approach, the design matrix

of GLM is determined automatically using tICA decomposition.

An fMRI study using our unified approach is then also presented. It

should be noted that this method is not restricted to fMRI studies

and can, in principle, be used for other types of studies such as

optical imaging, PET, etc.
Materials and methods

Overview of the general linear model (GLM)

The GLM underlies most of the statistical analyses that are used

in neuroimaging. It is the foundation for the t test, analysis of

variance (ANOVA), analysis of covariance (ANCOVA), regression

analysis, and many of the multivariate methods including factor

analysis, cluster analysis, multidimensional scaling, discriminate

function analysis, and canonical correlation. It is simply an equation

that relates observations to expectations by expressing the observa-

tions (response variable) as a linear combination of expected

components (or explanatory variables) and some residual error.

Let xi denote the observations, then the general linear model is:

xi ¼ gi1 b1 þ gi2 b2 þ : : : þ gik bk þ ei ð1Þ

where i = 1,. . .,I is the index of observations, the coefficients gik are

explanatory variables, and bk are unknown parameters representing

the weights of each of the explanatory variables. The model

assumes that the errors ei are independent and identically

distributed normal random variables with zero mean and variance

r2, written ei
iid
~ N(0, r2).

In SPM, the GLM used is as follows:

xij ¼ gi1 b1j þ gi2 b2j þ : : : þ gik bkj þ eij ð2Þ

where xij denotes the response variable such as regional CBF at

voxel j = 1,. . .,J, i indexes scan, eij ~ N (0, rj
2). The matrix form of

Eq. (2) is:

X ¼ Gb þ e ð3Þ

and can be regarded as a mass-univariate model.

The matrix G is called design matrix. It contains the explanatory

variables relating to the specific experimental conditions under

which the observations were made. They may be of direct interest

(e.g., the effect of particular sensorimotor or cognitive condition,

the degree of sensorimotor or cognitive processing, or the

interaction of different factors). Others may pertain to confounding

effects (e.g., the effect of being a particular subject, non-

physiological noise due to instrument or head movement, physio-

logical noise such as cardiac and respiratory effects). Each column

of G is associated with an unknown parameter in vectors bj.

Least squares estimates of bkj are given uniquely by

b̂b ¼ GT G
� ��1

GT X ð4Þ

where E{b̂j} = bj and Var{b̂j} = rj
2 (GT G)�1.

The residual variance can be estimated by the residual mean

square,

r̂r2 ¼ eTe

I � p
fr2 v2 I�p

I � p
ð5Þ

where p = rank(G). The least squares estimates are themselves

normally distributed, i.e., b̂ ~ N(b, r2(GTG)�1). For a column

vector of J weights c, cTb̂ ~ N(cTb, r2cT (GTG)�1c). Furthermore,

b̂ and r̂2 are independent, thus pre-specified hypotheses concern-

ing linear compounds of the model parameters can be assessed

using

cT b̂b � cT bffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r̂r2 cT GT G

� ��1
c

q ftI�p ð6Þ
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That is, the hypothesis H0:c
Tb = d can be assessed by

comparing

T ¼ cT b̂b � dffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r̂r2 cT GT G

� ��1
c

q

with a Student’s t distribution with I � p degrees of freedom.

Overview of independent component analysis (ICA)

ICA has been used recently to characterize brain responses

(Duann et al., 2002; Jung et al., 2001; Moritz et al., 2000). ICA

attempts to separate independent dsourcesT that have been mixed

together (e.g., different speakers recorded on a single microphone,

i.e., the dcocktail partyT problem).

Assume that n random variables x1,. . .,xn are observed and

modeled as a linear combination of n random variables s1,. . .,sn:

xi ¼ ai1 s1 þ ai2 s2 þ : : : þ ain sn ð7Þ

for all i = 1,. . .,n, where aij,i, j = 1,. . .,n are some real coefficients.

By definition, si (i = 1,. . .,n) are statistically independent. This is

the basic ICA model, describing how the observations are

generated by mixing the components si. Using the vector–matrix

notation, Eq. (7) can be written as:

X ¼ AS ð8Þ

The independent components si (abbreviated as ICs) are latent

variables, meaning that they cannot be directly observed. Also the

mixing coefficients aij are assumed to be unknown. We can only obQ

serve the random variables xi, and must estimate aij and si using xi.

The ICA model assumes (i) the ICs are statistically independent

and (ii) they have non-Gaussian distributions. Under these

assumptions, after estimating the matrix A, we can compute its

inverse A�1, and obtain the ICs simply with

S ¼ A�1X ð9Þ
There are several methods to estimate A such as ICA by

maximization of non-Gaussianity, by maximum likelihood estima-

tion, by minimization of mutual information, and by tensorial

methods, etc. (Hyvärinen et al., 2001).

Once ICA has been performed, we obtain the ICs and their

mixing matrix. The ICs sometimes have some physical meaning.

For example, in relation to the dcocktail partyT problem, each IC

corresponds to one speaker, while the mixing matrix indicates the

way in which their voices are mixed.

ICA, as applied to fMRI, can be used to separate either spatially

(McKeown et al., 1998a) or temporally (Biswal and Ulmer, 1999;

Makeig et al., 1997) independent sources. Suppose X is an N-by-M

matrix (where N is the number of time points and M is the number

of voxels in each scan and usually N bb M). In spatial ICA (sICA),

the signals are the M voxels and there are N different observations

of these signals. Temporal ICA (tICA) considers the signals as N

individual time courses of which there areM observations. At most

M ICs can be obtained, each of which corresponds to a spatially

independent component map (for sICA) or a temporally independ-

ent time course (for tICA).

A principal advantage of ICA is its applicability to paradigms in

which detailed models of brain responses are not available (e.g.,

hallucinations and auditory analysis, see Seifritz et al., 2002). In

these contexts, it is a more objective approach to the structure of
the data than the model-based methods. However, ICA cannot

establish the significance of each IC; the ICA model is not a

statistical model that supports classical inference. This is because

there is no null model to compare it with. Another way of looking

at this is to note there is no observation error in the ICA model (Eq.

(8)). Furthermore, the spatial characterization of treatment effects is

in terms of spatial modes which have no regional specificity. In the

following, we use SPM to make classical inferences about the

region-specific expression of ICs obtained from tICA. This

circumvents the two shortcoming of tICA, namely lack of

inference and lack of regional specificity.

A unified method

Comparing Eq. (3) with Eq. (8), we note that the GLM and ICA

models share common features. They both try to explain

observations in terms of a linear combination of explanatory

variables, which embody the structure of the observed data. The

difference lies mainly in the causes of the data: the GLM uses

hypothesis-led causes, whereas ICA is data-led. In the GLM, the

number and the form of the explanatory variables are determined

by a priori information and have explicit meaning or labels. It falls

to the researcher to include all possible factors that may contribute

to the data. Once the model is estimated, the un-modelled

responses, whether meaningful or not, will be assigned to the

error term. Conversely, in ICA, the dataset is decomposed into

several explanatory variables that include all causes, irrespective of

whether they were predicted or not. The problem now is that there

are too many causes and there are no degrees of freedom left for

making any inference about the interesting ones.

In the following, we introduce the notion of arbitrarily

partitioning the ICs into signal and noise subspaces. This enables

one to test the null hypothesis that the signal ICs contributed

nothing to the data. Initially, this may seem rather circular because

we already know the signal ICs are veridical causes of the data

from the ICA. However, from the point of view of any single

region, we have no idea whether these ICs were expressed or not.

By adopting the mass-univariate approach of SPM, one can make

regionally-specific inferences about the significance of the signal

ICs that were obtained from the multivariate ICA. Clearly, this

violates good statistical practice because we know a priori the null

hypothesis is false. In other words, the tests will be slightly invalid

with an increased false-positive rate. However, we will assume the

contribution of any single region to the signal ICs will be

sufficiently small to ignore this violation. We test this assumption

using simulated data below.

In short, we will define a signal subspace on the basis of spatial

distributed responses throughout the brain and then re-visit each

voxel to see if these signals were expressed significantly in that

region. This simple approach reduces to treating a subset of the ICs

as potential explanatory variables that comprise the design matrix

in the GLM. We then use established procedures (the theory of

Gaussian random fields) to characterize significant regional

responses with SPM.

There are three issues that need to be considered. The first is

whether sICA or tICA is more appropriate for our purposes. This

problem has been discussed elsewhere (Calhoun et al., 2001a; Stone

et al., 2002). It has been suggested that when the basic assumptions

of ICA hold true, i.e., the original causes are not strongly spatially

or temporally dependent, a successful separation will be obtained.

For the unified method, tICA is more appropriate than sICA



Fig. 1. Position of the two oblique slices providing coverage of the

movement area in the cortex.
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because ICs are time courses representing independent causes. This

accords with the basic assumption of the GLM. Namely, that all

voxels share the same explanatory variables. Furthermore, by

enforcing independence among the temporal causes, there is a clear

motivation for finding the regional correlates of these causes with

SPM. sICA is predicated on assumptions about the spatial

distribution of regional responses that are not embodied in the

mass-univariate approach adopted by SPM.

It is noted that, tICA would not be viable if without an

appropriate pre-processing procedure (Calhoun et al., 2001a). In

practice, tICA is enabled by a dimension reduction prior to

estimation of the mixing matrix. This is usually performed using

principal component analysis (PCA) (Calhoun et al., 2001a; Makeig

et al., 1997; Liu et al., 2004) to project the original dataset or reduced

dataset with irrelevant voxels excluded on a new orthogonal

coordinate system by maximizing the variance of the projected

data. The first principal component corresponds to the direction with

maximal variance, and the second expresses the greatest variance in

the sub-space orthogonal to the first, and so on. Thus, the original

dataset is decomposed into a small number of principal components

that explain the most variance (energy) in the data. In summary,

PCA can reduce the data dimension while preserving useful signals.

This reduces the computational burden for tICA and increases the

signal-to-noise ratio (SNR) (Hyvärinen et al., 2001).

Secondly, as mentioned above, ICA is a determinate model with

no error term. However, degrees of freedom must be recovered to

enable classical inference in the context of the GLM. This requires

a bipartition of the ICs to define a small number of signal ICs that

enter the design matrix, i.e., to determine the degrees of freedom of

the model. Researchers have proposed several approaches model

specification, for instance, the Bayesian information criterion

(BIC) (Stoica and Selen, 2004; Thirion and Faugeras, 2003),

Akaike information criterion (AIC) (Akaike, 1974), minimum

description length (MDL) (Calhoun et al., 2001b; Rissanen, 1983;

Thirion and Faugeras, 2003), deviance information criterion (DIC)

(Woolrich et al., 2004). These criteria combine a goodness-of-fit

measure (GOF) with a generalizability or complexity measure

(number of parameters of the model, sample size, and functional

form, etc.) so that the model is the best approximation to the

underlying process, not simply the one that accounts for the most

variation in the data (Pitt and Myung, 2002). In this sense, the BIC

can be regarded as an approximation to the log of the model

evidence (the probability of the data given a model).

We compute the BIC as follows:

BIC ¼ � 2ln f y j h0ð Þð Þ þ kln Mð Þ ð10Þ

where y denotes the observed data, h are the model parameters, h0

are the parameters that maximize the posterior probability density

function f( y|h), k is the number of parameters, M is the sample

size. The model, with k parameters, that minimizes the criterion is

chosen, when k corresponds to the number of ICs, constrained by

the PCA dimension reduction. It is important to ensure that the

PCA dimension reduction does not overly constrain the signal

subspace; otherwise, the identification of dindependentT causes by
ICA will be compromised.

Thirdly, one has to specify the ICs that constitute the signal

subspace. In our work, we use those that show the greatest

correlation with known experimental factors. This extends the

marriage of data- and hypothesis-led approaches to another level.

However, we note that the selection of signal ICs can be performed

according to meaning of the inferences sought. For example, one
could use ICs that expressed the greatest power at the fundamental

frequency of designed experimental changes.

In summary, the unified method comprises the following steps:

(i) dimension reduction with PCA, (ii) ICA using the BIC, to

determine model order, (iii) use the temporal ICs to specify a design

matrix for a GLM, and (iv) then use SPM to make inference about

regional responses. The key contribution of the unified scheme is

the marriage of ICA and SPM to endow data-led characterizations

of brain responses with regional specificity. ICA is a multivariate

approach that expresses independent responses in terms of spatial

modes, which have no local or regional support. By borrowing

devices from classical inference (namely random field theory) we

are able to assess the significance of the expression of these modes

at each point in the brain. This is achieved by testing the null

hypothesis that the amount of variance explained by a subset of ICs

is no greater than that explained by the remainder (assigned to a

noise subspace). We can do this because the components are

identified on the basis of their independence, not on the amount of

variance they explain (this is in contradistinction to PCA).

Experimental design and data acquisition

Data were acquired in a GE Signa System operating at 1.5 Twith

a gradient echo EPI sequence (TR = 3.12 s, TE = 60 ms, FOV =

24 cm, matrix = 64 � 64, slice thickness = 5 mm, gap = 1.5 mm).

Eight oblique slices were acquired, with an angle of approximately

208 to the AC–PC plane (Fig. 1). These slices were selected to cover

the motor representation in the cortex, excluding the cerebellum and

basal ganglion. Twelve healthy, right-handed subjects (six males

and six females) were scanned while performing left hand and right

hand movements. The movements were elicited with a periodic

design consisting of 5 blocks of 20 scans. Each block consisted of

10 baseline scans followed by 10 scans of movement. The whole

experiment lasted 312 s. Another null dataset was acquired from a

healthy subject who performed no specific task.

Simulations and analysis

Monte Carlo simulations and analyses similar to those

described by Della-Maggiore et al. (2002) were used to assess

the power of the unified scheme. The null dataset was used for

these simulations to provide realistic noise and endogenous

variation in signal. Simulated activations were added to the null
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data at 50 randomly positioned regions. Each region consisted of

3 � 3 � 2 voxels (i.e., 11.25 � 11.25 � 10 mm). This process was

repeated 10 times, resulting in 10 datasets with totally 500 dactiveT
regions to evaluate the power.

We performed two groups of simulations with different forms

of hemodynamic responses on the null dataset. For a parametric

hemodynamic response, an HRF derived from Cohen (1997) was

convolved with a four-period boxcar function. This signal was

added to the baseline time-series of the dactiveT regions. The HRF
had the following form:

h tð Þ ¼ t8:6 e �t=0:547ð Þ ð10Þ

where t is time. The magnitude was 1% of the average null signal

amplitude.

For a nonparametric HRF, the response was constructed using

the average response of the subjects making real movements. An

SPM analysis (SPM2, Wellcome Department of Cognitive Neu-

rology) was applied to the datasets of all subjects in the hand

movement experiment (see next section). The mean time-series

was calculated for each region that exhibited task-related changes.

This was then normalized to lie between 0 and 1. This procedure

gave 25 such time-series, some of which are shown in Fig. 2. For

each of the 500 dactiveT regions, a randomly scaled time-series was

added to the baseline. The magnitude of the added response was

2%, 3%, and 4%, respectively. The typical signal change in fMRI

is between 2% and 4% for this paradigm.

The simulated data were analyzed using SPM and the unified

method. For SPM, we used the conventional method to construct

the design matrix. A boxcar stimulus function, convolved with a

canonical HRF and its time derivate, was included. A set of 4

discrete cosine basis functions was appended to the design matrix

to implement a high-pass filtering. This has been shown to increase

the power of SPM (Della-Maggiore et al., 2002). For the unified

method, tICA, based on Maximum Likelihood (ML, with tanh(d )

as the nonlinearity) algorithm, was applied to the time series,

resulting in independent time courses (signal ICs) whose number

was determined by the BIC. These ICs were sorted according to

their correlation coefficients with the reference function and were

entered into a design matrix. Parameters in the GLM were

estimated where serial correlations were modeled with an AR(1)

model. Statistical inference was performed under a series of alpha

levels (t test, where the uncorrected P was varied from 1e�8 to 1).

The status of each dactiveT region was used to estimate sensitivity

or power and as a function of the alpha-level (i.e., specificity).

Experimental data analysis

Left hand and right hand movement data for the 12 subjects

were analyzed using the SPM2 software package. Spatial trans-
Fig. 2. Examples of hemodynamic responses extracted from the activation are
formation (realignment, spatial normalization) was performed to

correct for motion. Data were smoothed spatially with a Gaussian

filter (4-mm full-width half-maximum (FWHM) kernel). The

preprocessing is necessary for subsequent analysis and it has been

verified that the smoothing does not change the ICA results

markedly (this does not mean that smoothing does not affect ICA

results in general, see Calhoun et al., 2001a). The other steps of

model specification and parameters estimation were exactly the

same as the simulation analysis. Statistical inferences were made

about movement-related responses using the appropriate contrasts

(t test, P = 0.001, uncorrected).
Results

Simulation results

The power of SPM and the SPM–ICA method were calculated,

using simulated data, for different alpha levels and response

amplitudes. The results shown in Fig. 3 indicate that under almost

all the conditions, the unified method has higher power than SPM,

which is evident especially when the hemodynamic response is

nonparametric. The false-positive rates of the two methods are

comparable under typical lower alpha levels, for example, P =

0.001. However, as expected, when the alpha value goes higher,

the false-positive rate of the unified method is a little larger. The

receiver operating characteristic (ROC) curves were used for

further comparison (see Fig. 4). In most situations, the ROC curves

of SPM–ICA are higher than those of SPM, which indicates that

the unified method outperforms the conventional SPM.

The area under the ROC curve (AUC) was taken as a scalar

measure (Hanley and McNeil, 1982). An area of 1 represents a

perfect test; while 0.5 or below chance discrimination. When SNR

was 1% for the nonparametric case, both SPM and the unified

method failed to give good results (AUC = 0.4332, 0.4091). When

SNR was 0.5% for the parametric case, SPM failed while SPM–

ICA still works (AUC = 0.4691, 0.5593).

Results from the real datasets

Activations in the 12 subjects were similar, consistent, and

replicable (Table 1). The areas corresponding to motor (premotor,

sensorimotor and SMA) areas were identified. To highlight the

difference between these two methods, we can apply logical dORT
operation on the upper and lower part of Table 1 to obtain the

number of occurrences of a region. For premotor and sensorimotor

areas and SMA, both SPM and the unified method detected

activations in all the 24 datasets. For temporal, frontal, cingulate,

and parietal gyrus, the detected occurrence numbers of SPM

versus the new method are 8/10, 7/11, 7/9, 10/12 for the left and
as. These were added to the baseline signal to construct simulated data.



Fig. 3. Power analysis of the two methods. The baseline images were mixed with either a parametric or a nonparametric simulated response of differing

magnitude. 1% means the magnitude of the hemodynamic response (HR) is 1% of the signal magnitude.
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5/11, 10/12, 6/10, 9/12 for the right hand experiments, respec-

tively. Thus, the SPM–ICA method has higher detection rates in

this empirical analysis as suggested by the ROC analysis (Fig. 4).

To provide more detailed information, we present the results for

subject 1 as an example (Figs. 5 and 6). The SPM results and the

corresponding columns of design matrix are shown in Fig. 5.

Similarly, results of the unified method are shown in Fig. 6.

The conventional SPM found some activation areas, e.g., the

contralateral sensorimotor and premotor areas, supplementary

motor areas, and ipsilateral premotor areas, in both left hand and

right hand movement experiments (Figs. 5A and B). Allowing for

slight onset differences, several parts of the parietal and inferior

frontal regions were also activated (Figs. 5C and D). Comparing

the results of our unified approach with those of the SPM

method, we found similar activated areas (Figs. 6A and B).

However, parts of the parietal and frontal cortex were found by

our approach to be activated by both left and right hand

movements, though differing in their relative positions (Figs.

6C and D). Some of these extra areas were also disclosed by

conventional analyses when allowing for slight onset differences.

However, more areas and more significant activations were found

using the unified method.

Some activated areas showed responses that are consistently

time-locked to the designed block called consistently task-related

(CTR) components (McKeown et al., 1998a,b). Among the CTR
Fig. 4. The ROC curve of SPM and the unified method. The baseline images we

differing magnitude. 1% means the magnitude of the hemodynamic response (HR)

signal change, the area under the ROC curve (AUC) is 0.7668 and 0.7876 for SPM

2% signal change, AUC = 0.5345 and 0.5427, respectively; for that with a non

nonparametric HR, 4% signal change, AUC = 0.7708 and 0.9085.
areas, the bilateral premotor and sensorimotor areas and SMA

appear to play a role in executing hand movement (Moritz et al.,

2000, 2003; Umests et al., 2002). In addition, parts of the frontal,

temporal, cingulate, and parietal gyrus also show the CTR

characteristics. Specifically, the CTR time course rises at the onset

of each stimulus, holds near the maximum value during the block,

and decreases when the task is over. We found that only one

component from each trial had a CTR time course closely matching

the reference function (r = 0.9420 and 0.9052 for left and right

hand movement, respectively, as shown in Figs. 6A and B).

It can be seen that the CTR curve is very similar to the HRF

regressor. At the same time, the CTR component and HRF are not

completely the same.

The temporal characteristics of the hemodynamic response,

among different control-task blocks, are not exactly the same. The

difference suggests that the subject’s response is not always stable.

In neuroimaging analysis, inference may be confounded by

uncertainty due to a thing like warming-up of the machine,

psychological and physiological preparation of the subject, etc. If

we could anticipate or estimate such uncertainty during the design

of model, the observed data could be modeled much better.

In contrast to the CTR areas, there were some transiently task-

related (TTR) areas. The unified method shows that, though

differences among subjects exist, parts of parietal and frontal

cortex are TTR areas (Table 1 and Figs. 6C and D).
re mixed with either a parametric or nonparametric simulated response of

is 1% of the signal magnitude. For simulation with a parametric HR and 1%

and SPM–ICA, respectively; for simulation with a nonparametric HR and

parametric HR, 3% signal change, AUC = 0.6203 and 0.8241; and for a
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TTR components have different temporal characteristics. There are

several definitions of TTR, among which the most cited was

posited by McKeown et al. (1998a,b). They defined TTR areas as

those which are time-locked to the design during part of the task.

They noted that some TTR components showed a marked

activation at the onset of one or two of the task blocks, especially

the early blocks, and suggested they may arise from shifts in

performance strategy, from variations in subject arousal, attention,

or effort, or from changes in brain activation produced by learning

or habituation. Our results show that some TTR components (such

as the curve in Fig. 6C) have this temporal characteristic. This can

be seen in the first two blocks, where the time course is highly

correlated with the CTR component. But in some paradigms, the

TTR component is not the same. Their time courses may rise at the

onset of each stimulus and then decrease quickly, forming a peak

within each block, as can be seen in the curve in Fig. 6D. The

regularity of these peaks may have some meaning. So we tried to

extend the original definition of TTR by Mckeown et al. as

follows: TTR components are those that are time-locked to the

task-block design during part of the task or a part of the task block.

Based on this definition, 19 TTR components were found in all 24

datasets (no obvious TTR components were found in the datasets

of subject 5, right hand dataset of subject 6, and left hand datasets

of subject 9 and subject 10, see Table 1). The physiological

meaning of these TTR areas may relate to fast process concerned

with information processing within the task, such as shifts of

attention or effort as Mckeown et al. have pointed out, or even

distraction from the task.

Anatomical and physiological evidence has demonstrated that

the posterior parietal cortex may participate in motor preparation. It

is also regarded as participating in somatosensory processing (Forss

et al., 1997; Thees et al., 2003) and possibly sensorimotor

integration (Mountcastle et al., 1975; Thees et al., 2003). An

important function it performs is integrating the spatial relationship

among objects through multimodal sensory input, and then linking

this information with the position of the body. These computations

are part of movement programming. It has also been demonstrated

that the right part of the posterior parietal cortex is implicated in this

function, which is consistent with our results, where the activated

parietal areas locate mostly in the right hemisphere. Aside from the

parietal cortex, activation was also found in the frontal cortex.

Traditionally, the frontal lobe is thought to serve the function of

planning, initiation, cessation, and evaluation of behavior. Mesial

frontal cortex activation has been reported to contribute to both the

preparation for movement and the descending activation of spinal

motor networks (MacKinnon et al., 1996). Hence, from the

functional attribution of these areas in the literature, it is not

surprising that these areas showed TTR characteristics with an

isolated peak near the onset of each stimulus.
Discussion

In this paper, we have described a combined data-led and

hypothesis-led analysis procedure for fMRI time-series. In brief,

after appropriate pre-processing, the multi-variate time-series are

subject to ICA. The ensuing ICs over time are then used as

explanatory variables in a general linear model to enable a

conventional SPM analysis.

The SPMs are used to finesse the characterization of regionally

specific brain responses in terms of a priori independent



Fig. 5. Surface projection of subject 1’s activated brain areas as detected by

SPM. Panels A and C are results for left hand movement, and panels B and

D are results for right hand movement. The corresponding columns of the

design matrix are shown in the left of each panel.

Fig. 6. Surface projection of subject 1’s activated brain areas detected by the

unified method. Panels A and C are results of left hand movement, and

panels B and D are results of right hand movement. The design matrix was

constructed using tICA. The curve in the left of the activation map is the

corresponding column in the design matrix. Panels A and B indicate CTR

components, and panels C and D TTR. Above each curve is its correlation

coefficient with the reference function.
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component analysis. Critically, this rests upon a bipartition of the

response variable into signal and noise. The signal lies in the space

spanned by the ICs selected. The null space of these components

contains noise. The SPM tests the variance lying in signal space

against noise to disclose anatomically localized regions that have

high signal to noise ratio.

Although our approach is not a valid classical inference

procedure, it is interesting to reflect on the following argument: if

we wanted to interpret the SPMs in terms of classical inference (i.e.,

declare the significant regionally specific responses), we would

have to establish that the regressors or explanatory variables were

formed independently of the data. One approach to this would be to

derive the independent components from the left hand movement

data and use them in a general linear model of the right hand

movement data. However, this approach would not be sensitive to

transiently task-related responses that were unique to either

paradigm. An alternative argument is that omitting any single voxel

or region from the independent component analysis would not affect

the ensuing ICs to a great degree. If we assume that the ICs are the

same with and without omitting a particular voxel, then the ICs can

be regarded as being defined on the basis of independent data. In

this case, the null hypothesis is that the voxel in question does not

share any response profiles with the selected temporal modes or ICs

used in the general linear model. This argument holds equally for all

voxels and can be used as a partial motivation for interpreting the

resulting SPMs in relation to a null hypothesis. Although this is an
argument that deserves consideration, we reiterate that the SPM is

used only to endow a regional specificity on brain responses given a

signal-noise by-partition afforded by ICA.

Previously, we mentioned other model-free methods, such as

PCA and clustering analysis. If ICAs were replaced by PCA in the

unified method, there would be a fundamental problem, since the

Type I error rate would be much higher than the established alpha

level. This would make statistical inference extremely biased and

invalid. ICA, in contradistinction to PCA, identifies the explan-

atory variables on the basis of their independence, not on the

amount of variance they explain. Our simulations confirm that the

Type I error rate of the unified method conforms to nominal levels

when the alpha level is low (b0.01). This ensures that the use of

SPM remains valid.

An issue that arises in practice is specifying the number of ICs.

In our work, the number of ICs, according to the BIC criterion,

varied between 4 and 12, with the mean value 8.17 and standard

deviation 1.56. Thus, 12 ICs would have been sufficient to

characterize our fMRI data. We have also performed the SPM–ICA

analysis on all the real fMRI datasets with 12 ICs. The activation

results were quite similar to those using SPM–ICA with the IC

numbers selected by BIC.
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One may consider the stability of ICA decomposition in our

scheme. From several tests, we found that the convergence is

highly correlated with the cost function used by ICA and the

dimension of the data. ICA by ML algorithm works well if we

reduce the data dimension by PCA and exclude the irrelevant

voxels successfully (Liu et al., 2004). More discussions about the

convergence of ICA can be found in Hyvärinen et al. (2001).

Finally, in our experiment, the estimated ICs are sorted

according to their correlation coefficients with the reference

function. Some other methods such as power spectrum ranked

ICA have been proposed (Moritz et al., 2003). The order of the ICs

does not affect the estimation of parameters in GLM, but when

making statistical inference the contrast of the variables should be

carefully assigned. It is strongly recommended that, to supervise

the decomposition procedure, indices related with correlation

coefficients or power spectrum should be applied with proper

threshold set in advance. Once the index is extremely low, it is

well-founded that the corresponding components would not be so

obviously related with the stimuli and could be excluded from the

following statistical inference. If all the decomposed ICs have

indices less than the threshold, then it is suggested that the dataset

does not contain task-related components or the ICA decom-

position fails with the current IC number. In our work, we have

also performed the simulation on 0% signal level, which would

inform directly on the type I error rate. The correlation coefficients

of all ICs are less than 0.1. If statistical inference is carried on no

matter what these indices are, the false-positive rate of SPM–ICA

is obviously higher than that of SPM. But if we keep an eye on the

indices, this kind of errors could be avoided.

Great attention has been paid by many research groups so far to

ICA methods and their variants for fMRI. Our results demonstrated

that the combination of SPM and ICA had some advantages.

SPM offers several options in model specification. These

options make SPM flexible, but the choice of options is not always

easy. Essentially, as a model-driven method, it has an inherent

weakness: it does not extract the intrinsic structure of the data. If an

accurate model of signal changes with respect to experimental

events is not clear or constant across all voxels, this drawback is

significant. To avoid mistakes, tests are required to estimate the

accuracy of the specified model and some authors have made

specific suggestions (Della-Maggiore et al., 2002; Strother et al.,

2002). Using ICA for model specification requires only a little

work. ICA decomposes the data according to the independence of

the components instead of hypotheses about the data and can model

not only useful signals, but also noise, which helps to construct a

precise model of the data. Conventional methods, based on the

assumption of the stationarity of brain responses, typically require

averaging data over several task/control blocks. This makes them

less sensitive to detecting TTR changes, although these may be of

considerable interest (McKeown et al., 1998a,b). ICA can over-

come this disadvantage. It can detect both CTR and TTR

components. At the same time of detecting TTR areas, the CTR

areas are characterized with greater precision. Intuitively, the

activated areas around premotor and SMA together are separated

by tICA (Figs. 5 and 6). Our method also augments the capability of

ICA by putting it in the statistical framework supplied by SPM. A

similar approach called dHYBICAT, which characterizes the fMRI

data from spatial ICA and allows the researcher to construct a

design matrix, has also been presented by McKeown (2000).

Appropriate statistics can be computed on the resulting error terms

after linear model fitting. However, using the simplest form of the
GLM, which assumes that voxels are independent, ignoring

intrinsic spatial and temporal autocorrelation of fMRI signals, the

validity of the standard GLM statistical approach can be compro-

mised (McKeown, 2000; Zarahn et al., 1997). Specifically, by

considering task-related activity to be modeled as one static image

and one task-related time course, HYBICA will inevitably miss

some of the subtle transient changes caused by novelty or

habituation. It is also noted that the popular correlation analysis

can potentially be dangerous since the correlation coefficients

between the transient task-related signals and the standard block

design stimulus signals may not be large enough to reach the

threshold set for defining the activation (McKeown, 2000).

Our unified method relies on temporal ICA, which has been

used to disclose meaningful un-predicted and un-modelled

dynamics in the auditory system (Seifritz et al., 2002). The ICs

are time courses which correspond to the form of GLM. From this

perspective, our new approach is presented from a more

methodological perspective.

Moreover, the statistical criterion for the selection and

validation of the tICA-based linear model is quite effective in

solving the problem of under- or over- decomposition (in tICA

more than sICA). HYBICA combines sequentially the ICs to

compose CTR components, while the unified method identifies

CTR components directly.

The premise that ICA can be correctly applied to neuroimaging

data is based on the assumption that the ICA model is appropriate

(Calhoun et al., 2001a; Hyvärinen et al., 2001). To date, this

remains to be seen. Schemes to use the unified method to analyze

multiple subjects need to be developed. ICA has already been

extended for multi-subject analysis, referred to as Group ICA (see

Calhoun et al., 2001b; Sevensen et al., 2002), and this will be of

great interest in further development of the unified method.
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