PSYCH OpenIR  > 中国科学院心理健康重点实验室
Challenging False Discovery Rate: A Partition Test Based on p Values in Human Case-Control Association Studies
Ott, Jurg1; Liu, Zhe2; Shen, Yuanyuan3; Ott, J (reprint author), Chinese Acad Sci, Inst Psychol, Key Lab Mental Hlth, 4A Datun Rd, Beijing 100101, Peoples R China.
心理所单位排序1
摘要Background/Aims: We consider the situation that multiple genetic variants are underlying a heritable trait and assume that each contributes to the trait only to a small degree. The aim is to develop a statistical test for disease association of these multiple variants. Methods: We expect that p values resulting from a genome-wide case-control association analysis will fall into two classes: those reflecting true association and those occurring randomly in the interval from 0 to 1. We develop a partition test to find the set of smallest p values deviating most from the number of p values expected under randomness. Results: Power calculations demonstrate the superiority of our partition test over conventional SNP-by-SNP analyses. Applications of the partition test to six published datasets show that our test is particularly suitable when multiple SNPs appear to contribute to a trait, and furnished more significant results than a well-known procedure to estimate the false discovery rate. Conclusions: Our partition test also furnishes an estimate of the number of functional SNPs underlying disease and can be highly significant, while single-locus tests may be far from significant. Copyright (C) 2012 S. Karger AG, Basel
关键词Multilocus analysis Case-control association test False discovery rate Multiple testing
学科领域Medical Psychology
2012
语种英语
发表期刊HUMAN HEREDITY
ISSN0001-5652
卷号74期号:1页码:45-50
期刊论文类型Article
收录类别SCI
项目简介Support from China NSFC grant No. 30730057 is gratefully acknowledged. This study used data from the SNP Database at the NINDS Human Genetics Resource Center DNA and Cell Line Repository (http://ccr.coriell.org/ninds), as well as clinical data. The original genotyping was performed in the laboratories of Drs. Singleton and Hardy, (NIA, LNG), Bethesda, Md., USA. Funding support for development of a novel analysis methods was provided by the Rockefeller University, based on a subcontract from the Albert Einstein College of Medicine, and the genotyping of samples was provided through the Genetic Association Information Network (GAIN). The schizophrenia dataset used for the analyses described in this study was obtained from the database of Genotype and Phenotype (dbGaP) found at http://www.ncbi.nlm.nih.gov/gap. We thank Dr. P.K. Gregersen for allowing us to use his RA dataset for this study.
WOS记录号WOS:000311045000006
资助机构China NSFC [30730057] ; Rockefeller University from the Albert Einstein College of Medicine
引用统计
被引频次:6[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://ir.psych.ac.cn/handle/311026/11435
专题中国科学院心理健康重点实验室
通讯作者Ott, J (reprint author), Chinese Acad Sci, Inst Psychol, Key Lab Mental Hlth, 4A Datun Rd, Beijing 100101, Peoples R China.
作者单位1.Chinese Acad Sci, Inst Psychol, Key Lab Mental Hlth, Beijing 100101, Peoples R China
2.Univ Chicago, Dept Stat, Chicago, IL 60637 USA
3.Harvard Univ, Sch Publ Hlth, Dept Biostat, Boston, MA 02115 USA
第一作者单位中国科学院心理健康重点实验室
推荐引用方式
GB/T 7714
Ott, Jurg,Liu, Zhe,Shen, Yuanyuan,et al. Challenging False Discovery Rate: A Partition Test Based on p Values in Human Case-Control Association Studies[J]. HUMAN HEREDITY,2012,74(1):45-50.
APA Ott, Jurg,Liu, Zhe,Shen, Yuanyuan,&Ott, J .(2012).Challenging False Discovery Rate: A Partition Test Based on p Values in Human Case-Control Association Studies.HUMAN HEREDITY,74(1),45-50.
MLA Ott, Jurg,et al."Challenging False Discovery Rate: A Partition Test Based on p Values in Human Case-Control Association Studies".HUMAN HEREDITY 74.1(2012):45-50.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
WOS000311045000006.p(144KB) 限制开放Apache License请求全文
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Ott, Jurg]的文章
[Liu, Zhe]的文章
[Shen, Yuanyuan]的文章
百度学术
百度学术中相似的文章
[Ott, Jurg]的文章
[Liu, Zhe]的文章
[Shen, Yuanyuan]的文章
必应学术
必应学术中相似的文章
[Ott, Jurg]的文章
[Liu, Zhe]的文章
[Shen, Yuanyuan]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。