A clustering approach for blind source separation with more sources than mixtures
Shi, ZW; Tang, HW; Tang, YY; Yin, FL; Wang, J; Guo, CG
2004
发表期刊ADVANCES IN NEURAL NETWORKS - ISNN 2004, PT 1
ISSN0302-9743
文章类型Article
卷号3173页码:684-689
摘要In this paper, blind source separation is discussed with more sources than mixtures when the sources are sparse. The blind separation technique includes two steps. The first step is to estimate a mixing matrix, and the second is to estimate sources. The mixing matrix can be estimated by using a clustering approach which is described by the generalized exponential mixture model. The generalized exponential mixture model is a powerful uniform framework to learn the mixing matrix for sparse sources. After the mixing matrix is estimated, the sources can be obtained by solving a linear programming problem. The techniques we present here can be extended to the blind separation of more sources than mixtures with a Gaussian noise.
收录类别ISTP ; SCI
语种英语
WOS记录号WOS:000223492600112
引用统计
文献类型期刊论文
条目标识符http://ir.psych.ac.cn/handle/311026/13905
专题中国科学院心理研究所回溯数据库(1956-2010)
作者单位1.Dalian Univ Technol, Inst Computat Biol & Bioinformat, Dalian 116023, Peoples R China
2.Dalian Univ Technol, Inst Neuroinformat, Dalian 116023, Peoples R China
3.Chinese Acad Sci, Lab Visual Informat Proc, Beijing 100101, Peoples R China
4.Chinese Acad Sci, Key Lab Mental Hlth, Beijing 100101, Peoples R China
推荐引用方式
GB/T 7714
Shi, ZW,Tang, HW,Tang, YY,et al. A clustering approach for blind source separation with more sources than mixtures[J]. ADVANCES IN NEURAL NETWORKS - ISNN 2004, PT 1,2004,3173:684-689.
APA Shi, ZW,Tang, HW,Tang, YY,Yin, FL,Wang, J,&Guo, CG.(2004).A clustering approach for blind source separation with more sources than mixtures.ADVANCES IN NEURAL NETWORKS - ISNN 2004, PT 1,3173,684-689.
MLA Shi, ZW,et al."A clustering approach for blind source separation with more sources than mixtures".ADVANCES IN NEURAL NETWORKS - ISNN 2004, PT 1 3173(2004):684-689.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Shi, ZW]的文章
[Tang, HW]的文章
[Tang, YY]的文章
百度学术
百度学术中相似的文章
[Shi, ZW]的文章
[Tang, HW]的文章
[Tang, YY]的文章
必应学术
必应学术中相似的文章
[Shi, ZW]的文章
[Tang, HW]的文章
[Tang, YY]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。