PSYCH OpenIR  > 脑与认知科学国家重点实验室
Towards an optimal support vector machine classifier using a parallel particle swarm optimization strategy
Chen, Hui Ling1,2,4; Yang, Bo3,4; Wang, Su Jing5; Wang, Gang3; Liu, Da You3,4; Li, Huai Zhong1,2; Liu, Wen Bin1,2
2014-07-15
发表期刊APPLIED MATHEMATICS AND COMPUTATION
ISSN0096-3003
文章类型Article
卷号239期号:0页码:180-197
摘要Proper parameter settings of support vector machine (SVM) and feature selection are of great importance to its efficiency and accuracy. In this paper, we propose a parallel time variant particle swarm optimization (TVPSO) algorithm to simultaneously perform the parameter optimization and feature selection for SVM, termed PTVPSO-SVM. It is implemented in a parallel environment using Parallel Virtual Machine (PVM). In the proposed method, a weighted function is adopted to design the objective function of PSO, which takes into account the average classification accuracy rates (ACC) of SVM, the number of support vectors (SVs) and the selected features simultaneously. Furthermore, mutation operators are introduced to overcome the problem of the premature convergence of PSO algorithm. In addition, an improved binary PSO algorithm is employed to enhance the performance of PSO algorithm in feature selection task. The performance of the proposed method is compared with that of other methods on a comprehensive set of 30 benchmark data sets. The empirical results demonstrate that the proposed method cannot only obtain much more appropriate model parameters, discriminative feature subset as well as smaller sets of SVs but also significantly reduce the computational time, giving high predictive accuracy. (C) 2014 Elsevier Inc. All rights reserved.
关键词Support Vector Machines Particle Swarm Optimization Parallel Computing Feature Selection
收录类别SCI
语种英语
WOS记录号WOS:000336844300016
引用统计
被引频次:17[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://ir.psych.ac.cn/handle/311026/14139
专题脑与认知科学国家重点实验室
作者单位1.Wenzhou Univ, Coll Phys & Elect Informat, Wenzhou 325035, Zhejiang, Peoples R China
2.Wenzhou Univ, Coll Phys & Elect Informat, Wenzhou 325035, Zhejiang, Peoples R China
3.Jilin Univ, Coll Comp Sci & Technol, Changchun 130012, Peoples R China
4.Jilin Univ, Key Lab Symbol Computat & Knowledge Engn, Minist Educ, Changchun 130012, Peoples R China
5.Chinese Acad Sci, State Key Lab Brain & Cognit Sci, Inst Psychol, Beijing 100101, Peoples R China
推荐引用方式
GB/T 7714
Chen, Hui Ling,Yang, Bo,Wang, Su Jing,et al. Towards an optimal support vector machine classifier using a parallel particle swarm optimization strategy[J]. APPLIED MATHEMATICS AND COMPUTATION,2014,239(0):180-197.
APA Chen, Hui Ling.,Yang, Bo.,Wang, Su Jing.,Wang, Gang.,Liu, Da You.,...&Liu, Wen Bin.(2014).Towards an optimal support vector machine classifier using a parallel particle swarm optimization strategy.APPLIED MATHEMATICS AND COMPUTATION,239(0),180-197.
MLA Chen, Hui Ling,et al."Towards an optimal support vector machine classifier using a parallel particle swarm optimization strategy".APPLIED MATHEMATICS AND COMPUTATION 239.0(2014):180-197.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
WOS_000336844300016.(1566KB)期刊论文出版稿暂不开放CC BY-NC-SA请求全文
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Chen, Hui Ling]的文章
[Yang, Bo]的文章
[Wang, Su Jing]的文章
百度学术
百度学术中相似的文章
[Chen, Hui Ling]的文章
[Yang, Bo]的文章
[Wang, Su Jing]的文章
必应学术
必应学术中相似的文章
[Chen, Hui Ling]的文章
[Yang, Bo]的文章
[Wang, Su Jing]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。