PSYCH OpenIR  > 中国科学院行为科学重点实验室
Brain structure-function associations identified in large-scale neuroimaging data
Yang, Zhi1,2,3; Qiu, Jiang4; Wang, Peipei5,6; Liu, Rui1,2,7; Zuo, Xi-Nian1,2,4,8; Zhi Yang; Xi-Nian Zuo
第一作者Zhi Yang
2016-12-01
发表期刊BRAIN STRUCTURE & FUNCTION
通讯作者邮箱yangz@psych.ac.cn ; zuoxn@psych.ac.cn
ISSN1863-2653
文章类型Article
卷号221期号:9页码:4459-4474
Q分类Q1
产权排序1
摘要The relationships between structural and functional measures of the human brain remain largely unknown. A majority of our limited knowledge regarding structure-function associations has been obtained through comparisons between specific groups of patients and healthy controls. Unfortunately, a direct and complete view of the associations across multiple structural and functional metrics in normal population is missing. We filled this gap by learning cross-individual co-variance among structural and functional measures using large-scale neuroimaging datasets. A discover-confirm scheme was applied to two independent samples (N = 184 and N = 340) of multi-modal neuroimaging datasets. A data mining tool, gRAICAR, was employed in the discover stage to generate quantitative and unbiased hypotheses of the co-variance among six functional and six structural imaging metrics. These hypotheses were validated using an independent dataset in the confirm stage. Fifteen multi-metric co-variance units, representing different co-variance relationships among the 12 metrics, were reliable across the two sets of neuroimaging datasets. The reliable co-variance units were summarized into a database, where users can select any location on the cortical map of any metric to examine the co-varying maps with the other 11 metrics. This database characterized the six functional metrics based on their co-variance with structural metrics, and provided a detailed reference to connect previous findings using different metrics and to predict maps of unexamined metrics. Gender, age, and handedness were associated to the co-variance units, and a sub-study of schizophrenia demonstrated the usefulness of the co-variance database.
关键词Structure-function Association Independent Component Analysis Data Mining Connectomics Multi-modal Integration
学科领域生理心理学/生物心理学
DOI10.1007/s00429-015-1177-6
收录类别SCI ; SSCI
语种英语
项目资助者National Basic Research Program (973 Program)(2015CB351702) ; Natural Science Foundation of China(81571756 ; Foundation of Beijing Key Laboratory of Mental Disorders(2014JSJB03) ; Chinese Academy of Sciences(KSZD-EW-TZ-002) ; Beijing Nova Program for Science and Technology(XXJH2015B079) ; Institute of Psychology, Chinese Academy of Sciences ; 81270023 ; 81278412 ; 81471740 ; 81220108014)
项目简介This study was supported through funding from the National Basic Research Program (973 Program: 2015CB351702 to XNZ), the Natural Science Foundation of China (81571756 and 81270023 to ZY, 81278412 to JQ, 81471740 and 81220108014 to XNZ), the Foundation of Beijing Key Laboratory of Mental Disorders (2014JSJB03 to ZY), the Key Research Program (KSZD-EW-TZ-002) and the Hundred Talents Program of the Chinese Academy of Sciences (to XNZ), the Beijing Nova Program for Science and Technology (XXJH2015B079 to ZY), and the Outstanding Young Investigator Award of Institute of Psychology, Chinese Academy of Sciences (to ZY).
WOS研究方向Anatomy & Morphology ; Neurosciences & Neurology
WOS类目Anatomy & Morphology ; Neurosciences
WOS记录号WOS:000387657200011
WOS标题词Science & Technology ; Life Sciences & Biomedicine
关键词[WOS]RESTING-STATE FMRI ; HUMAN CEREBRAL-CORTEX ; INDEPENDENT COMPONENT ANALYSIS ; LOW-FREQUENCY FLUCTUATION ; SURFACE-BASED ANALYSIS ; CORTICAL THICKNESS ; 1ST-EPISODE SCHIZOPHRENIA ; CORRELATIONAL SELECTION ; PHENOTYPIC CORRELATIONS ; CONNECTIVITY NETWORKS
引用统计
文献类型期刊论文
条目标识符http://ir.psych.ac.cn/handle/311026/20744
专题中国科学院行为科学重点实验室
通讯作者Zhi Yang; Xi-Nian Zuo
作者单位1.Chinese Acad Sci, Inst Psychol, Key Lab Behav Sci, Lab Funct Connectome & Dev, 16 Lincui Rd, Beijing 100101, Peoples R China
2.Chinese Acad Sci, Inst Psychol, Magnet Resonance Imaging Res Ctr, 16 Lincui Rd, Beijing 100101, Peoples R China
3.Shanghai Jiao Tong Univ, Sch Med, Shanghai Key Lab Psychot Disorders, Shanghai Mental Hlth Ctr, Beijing 100101, Peoples R China
4.Southwest Univ, Fac Psychol, Chongqing 400715, Peoples R China
5.Capital Med Univ, Beijing Inst Brain Disorders, Beijing 100069, Peoples R China
6.Capital Med Univ, Sch Basic Med Sci, Ctr Higher Brain Funct Res, Beijing 100069, Peoples R China
7.Univ Chinese Acad Sci, Beijing 100049, Peoples R China
8.Guangxi Teachers Educ Univ, Sch Educ Sci, Dept Psychol, Nanning 530001, Guangxi, Peoples R China
推荐引用方式
GB/T 7714
Yang, Zhi,Qiu, Jiang,Wang, Peipei,et al. Brain structure-function associations identified in large-scale neuroimaging data[J]. BRAIN STRUCTURE & FUNCTION,2016,221(9):4459-4474.
APA Yang, Zhi.,Qiu, Jiang.,Wang, Peipei.,Liu, Rui.,Zuo, Xi-Nian.,...&Xi-Nian Zuo.(2016).Brain structure-function associations identified in large-scale neuroimaging data.BRAIN STRUCTURE & FUNCTION,221(9),4459-4474.
MLA Yang, Zhi,et al."Brain structure-function associations identified in large-scale neuroimaging data".BRAIN STRUCTURE & FUNCTION 221.9(2016):4459-4474.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
Yang2016_BSAF.pdf(2775KB)期刊论文作者接受稿开放获取CC BY-NC-SA请求全文
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Yang, Zhi]的文章
[Qiu, Jiang]的文章
[Wang, Peipei]的文章
百度学术
百度学术中相似的文章
[Yang, Zhi]的文章
[Qiu, Jiang]的文章
[Wang, Peipei]的文章
必应学术
必应学术中相似的文章
[Yang, Zhi]的文章
[Qiu, Jiang]的文章
[Wang, Peipei]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。