Institutional Repository, Institute of Psychology, Chinese Academy of Sciences
Sparse tensor canonical correlation analysis for micro-expression recognition | |
Wang,Su-Jing1; Yan,Wen-Jing2; Sun,Tingkai3; Zhao,Guoying4; Fu,Xiaolan5 | |
第一作者 | Wang, Su-Jing |
通讯作者邮箱 | wangsujing@psych.ac.cn |
心理所单位排序 | 1 |
摘要 | A micro-expression is considered a fast facial movement that indicates genuine emotions and thus provides a cue for deception detection. Due to its promising applications in various fields, psychologists and computer scientists, particularly those focus on computer vision and pattern recognition, have shown interest and conducted research on this topic. However, micro-expression recognition accuracy is still low. To improve the accuracy of such recognition, in this study, micro-expression data and their corresponding Local Binary Pattern (LBP) (Ojala et al., 2002) [1] code data are fused by correlation analysis. Here, we propose Sparse Tensor Canonical Correlation Analysis (STCCA) for micro-expression characteristics. A sparse solution is obtained by the regularized low rank matrix approximation. Experiments are conducted on two micro-expression databases, CASME and CASME 2, and the results show that STCCA performs better than the Three-dimensional Canonical Correlation Analysis (3D-CCA) without sparse resolution. The experimental results also show that STCCA performs better than three-order Discriminant Tensor Subspace Analysis (DTSA3) with discriminant information, smaller projected dimensions and a larger training set sample size. The experiments also showed that Multi-linear Principal Component Analysis (MPCA) is not suitable for micro-expression recognition because the eigenvectors corresponding to smaller eigenvectors are discarded, and those eigenvectors include brief and subtle motion information. (C) 2016 Elsevier B.V. All rights reserved. |
关键词 | Micro-expression recognition Correlation analysis Sparse representation Tensor subspace |
2016-11-19 | |
语种 | 英语 |
DOI | 10.1016/j.neucom.2016.05.083 |
发表期刊 | NEUROCOMPUTING |
ISSN | 0925-2312 |
卷号 | 214页码:218-232 |
期刊论文类型 | Article |
URL | 查看原文 |
收录类别 | SCI ; SSCI |
WOS关键词 | LOCAL BINARY PATTERNS ; DISCRIMINANT-ANALYSIS ; FACIAL EXPRESSIONS ; GAIT RECOGNITION ; OPTICAL-FLOW |
WOS标题词 | Science & Technology ; Technology |
WOS研究方向 | Computer Science |
WOS类目 | Computer Science, Artificial Intelligence |
WOS记录号 | WOS:000386741300023 |
WOS分区 | Q1 |
Q分类 | Q1 |
测试或任务 | micro-expression recognition;Sparse Tensor Canonical Correlation Analysis (STCCA) |
因变量指标 | recognition accuracy |
资助机构 | National Natural Science Foundation of China(61379095 ; Beijing Natural Science Foundation(4152055) ; Academy of Finland ; Infotech Oulu ; 61375009 ; 61472138 ; 31500875) |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | http://ir.psych.ac.cn/handle/311026/20932 |
专题 | 脑与认知科学国家重点实验室 |
作者单位 | 1.Chinese Acad Sci, Inst Psychol, Key Lab Behav Sci, Beijing 100101, Peoples R China; 2.Wenzhou Univ, Coll Teacher Educ, Wenzhou 325035, Peoples R China; 3.Nanjing Univ Sci & Technol, Comp Sci & Engn, Nanjing 210094, Jiangsu, Peoples R China; 4.Univ Oulu, Dept Comp Sci & Engn, Ctr Machine Vis Res, POB 4500, FI-90014 Oulu, Finland; 5.Chinese Acad Sci, Inst Psychol, State Key Lab Brain & Cognit Sci, Beijing 100101, Peoples R China |
第一作者单位 | 中国科学院行为科学重点实验室 |
推荐引用方式 GB/T 7714 | Wang,Su-Jing,Yan,Wen-Jing,Sun,Tingkai,et al. Sparse tensor canonical correlation analysis for micro-expression recognition[J]. NEUROCOMPUTING,2016,214:218-232. |
APA | Wang,Su-Jing,Yan,Wen-Jing,Sun,Tingkai,Zhao,Guoying,&Fu,Xiaolan.(2016).Sparse tensor canonical correlation analysis for micro-expression recognition.NEUROCOMPUTING,214,218-232. |
MLA | Wang,Su-Jing,et al."Sparse tensor canonical correlation analysis for micro-expression recognition".NEUROCOMPUTING 214(2016):218-232. |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | ||
Sparse tensor canoni(2100KB) | 期刊论文 | 出版稿 | 限制开放 | CC BY-NC-SA | 请求全文 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论