PSYCH OpenIR  > 脑与认知科学国家重点实验室
A Main Directional Mean Optical Flow Feature for Spontaneous Micro-Expression Recognition
Liu,Yong-Jin1; Zhang,Jin-Kai1; Yan,Wen-Jing3; Wang,Su-Jing2; Zhao,Guoying4,5; Fu,Xiaolan2
第一作者Liu, Yong-Jin
通讯作者邮箱liuyongjin@tsinghua.edu.cn
心理所单位排序2
摘要Micro-expressions are brief facial movements characterized by short duration, involuntariness and low intensity. Recognition of spontaneous facial micro-expressions is a great challenge. In this paper, we propose a simple yet effective Main Directional Mean Optical-flow (MDMO) feature for micro-expression recognition. We apply a robust optical flow method on micro-expression video clips and partition the facial area into regions of interest (ROIs) based partially on action units. The MDMO is a ROI-based, normalized statistic feature that considers both local statistic motion information and its spatial location. One of the significant characteristics of MDMO is that its feature dimension is small. The length of a MDMO feature vector is 36 x 2 = 72, where 36 is the number of ROIs. Furthermore, to reduce the influence of noise due to head movements, we propose an optical-flow-driven method to align all frames of a micro-expression video clip. Finally, a SVM classifier with the proposed MDMO feature is adopted for micro-expression recognition. Experimental results on three spontaneous micro-expression databases, namely SMIC, CASME and CASME II, show that the MDMO can achieve better performance than two state-of-the-art baseline features, i.e., LBP-TOP and HOOF.
关键词Micro-expression optical flow recognition feature
2016-10-01
语种英语
DOI10.1109/TAFFC.2015.2485205
发表期刊IEEE Transactions on Affective Computing
ISSN1949-3045
卷号7期号:4页码:299-310
期刊论文类型Article
URL查看原文
收录类别SCI
WOS关键词FACIAL EXPRESSIONS ; MODELS
WOS标题词Science & Technology ; Technology
WOS研究方向Computer Science
WOS类目Computer Science, Artificial Intelligence ; Computer Science, Cybernetics
WOS记录号WOS:000389328800001
WOS分区Q1
Q分类Q1
测试或任务micro-expression recognition; micro-expression spotting
因变量指标optical flow features; True Positive Rate; recall; precision;F1 score
统计软件Piotr Dollar's Matlab Toolbox
统计方法Main Directional Maximal Difference (MDMD) Analysis
资助机构National Natural Science Foundation of China(61322206 ; Beijing Natural Science Foundation(4152055) ; Open Projects Program of National Laboratory of Pattern Recognition(201306295) ; TNList Cross-discipline Foundation ; Academy of Finland ; Infotech Oulu ; 61521002 ; 61379095 ; 61375009)
引用统计
被引频次:279[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://ir.psych.ac.cn/handle/311026/20934
专题脑与认知科学国家重点实验室
作者单位1.Tsinghua Univ, Dept Comp Sci & Technol, Tsinghua Natl Lab Informat Sci & Technol, Beijing, Peoples R China;
2.Chinese Acad Sci, Inst Psychol, State Key Lab Brain & Cognit Sci, Beijing 100101, Peoples R China;
3.Wenzhou Univ, Coll Teacher Educ, Wenzhou 325035, Peoples R China;
4.Univ Oulu, Ctr Machine Vis Res, Infotech Oulu, POB 4500, FI-90014 Oulu, Finland;
5.Univ Oulu, Dept Elect & Informat Engn, POB 4500, FI-90014 Oulu, Finland
推荐引用方式
GB/T 7714
Liu,Yong-Jin,Zhang,Jin-Kai,Yan,Wen-Jing,et al. A Main Directional Mean Optical Flow Feature for Spontaneous Micro-Expression Recognition[J]. IEEE Transactions on Affective Computing,2016,7(4):299-310.
APA Liu,Yong-Jin,Zhang,Jin-Kai,Yan,Wen-Jing,Wang,Su-Jing,Zhao,Guoying,&Fu,Xiaolan.(2016).A Main Directional Mean Optical Flow Feature for Spontaneous Micro-Expression Recognition.IEEE Transactions on Affective Computing,7(4),299-310.
MLA Liu,Yong-Jin,et al."A Main Directional Mean Optical Flow Feature for Spontaneous Micro-Expression Recognition".IEEE Transactions on Affective Computing 7.4(2016):299-310.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
A Main Directional M(762KB)期刊论文出版稿限制开放CC BY-NC-SA请求全文
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Liu,Yong-Jin]的文章
[Zhang,Jin-Kai]的文章
[Yan,Wen-Jing]的文章
百度学术
百度学术中相似的文章
[Liu,Yong-Jin]的文章
[Zhang,Jin-Kai]的文章
[Yan,Wen-Jing]的文章
必应学术
必应学术中相似的文章
[Liu,Yong-Jin]的文章
[Zhang,Jin-Kai]的文章
[Yan,Wen-Jing]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。