PSYCH OpenIR  > 健康与遗传心理学研究室
Alternative TitleEvent-related Ir uinctionat Magnetic Resonance Lmaging of Simple and Sequential Movements
Thesis Advisor翁旭初
Degree Grantor中国科学院研究生院
Place of Conferral北京
Keyword简单运动 序列运动 大脑皮层功能磁 共振成像


Other Abstract

    Although neural substrates for sequential  movements  have  been  intensively
investigated, a series of issues remain contraversial. Event-related functional magnetic resonance imaging, a single-trial based non-invasive brain imaging technique, has provided an effective tool for exploring the neural mechanisms underlying simple and sequential movements.
    Methods: Event-related fMRI was used to investigate the activation of cerebral cortex during movements in 15 normal right-handed volunteers. The movement task included delayed (moving during cue presentation) and non-delayed (not moving until the end of cue presentation) "simple" (repetitively moving index finger) and "sequential" (sequentially moving all fingers according to the cue singal) movements. Multiple linear regression and deconvolution procedure was used to}detect the active ,brain region. Quantitative analysis was further implemented for comparison of the activation volume and intensity in each ROI between different movement tasks.
    Results:  While the supplementary  motor area (SMA) and contralateral sensorimotor cortex (SMC) were activated in all subjects during simple movements,only 60% subjects showed activation in bilateral premotor cortex (PMC), and bilateral posterior parietal cortex (PPC) during } sequential movements. All activated regions during simple movements were also activated during sequential movements, and the activated volume is larger than that of simple movements. The signal intensity in the contralateral SMC, bilateral PMC and PPC during sequential finger movement was significantly stronger than that during simple finger movements; the signal change  in  ipsilateral  PMC  and  contralateral  PPC  during  delayed  sequential movements was stronger than that during non-delayed sequential movements.
    Conclusion: Almost all studied brain areas are enganged during all four movement tasks in the present study. SMA and contralateral Ml play a critical role in motor control, involved in motor preparation and exectution respectively. When in tasks with higher spatio-temporal coordination and working memory demanding, PMC and PPC become more active. The present study revealed a distributed cortical network, areas within this network play complemental roles for coordination and execution of movements.

Document Type学位论文
Recommended Citation
GB/T 7714
贾富仓. 简单与序列运动的事件相关功能磁共振成像研究[D]. 北京. 中国科学院研究生院,2001.
Files in This Item:
File Name/Size DocType Version Access License
贾富仓-硕士学位论文.pdf(3900KB)学位论文 限制开放CC BY-NC-SAView Application Full Text
Related Services
Recommend this item
Usage statistics
Export to Endnote
Google Scholar
Similar articles in Google Scholar
[贾富仓]'s Articles
Baidu academic
Similar articles in Baidu academic
[贾富仓]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[贾富仓]'s Articles
Terms of Use
No data!
Social Bookmark/Share
File name: 贾富仓-硕士学位论文.pdf
Format: Adobe PDF
All comments (0)
No comment.

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.