Predicting Depression of Social Media User on Different Observation Windows | |
Hu, Q (Hu, Quan)1; Li, A (Li, Ang)2,3; Heng, F (Heng, Fei)4; Li, JP (Li, Jianpeng)4; Zhu, TS (Zhu, Tingshao)5 | |
2015 | |
会议名称 | IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology (WI-IAT) |
会议录名称 | IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology (WI-IAT) |
页码 | 361-364 |
会议日期 | DEC 06-09, 2015 |
会议地点 | Singapore, SINGAPORE |
摘要 | Depression has become a public health concern around the world. Traditional methods for detecting depression rely on self-report techniques, which suffer from inefficient data collection and processing. This paper built both classification and regression models based on linguistic and behavioral features acquired from 10,102 social media users, and compared classification and prediction accuracy respectively among models built on different observation windows. Results showed that users' depression can be predicted via social media. The best result appears when we make prediction in advance for half a month with a 2-month length of observation time. |
关键词 | Machine Learning Depression Microblogging Behavior Classification Prediction |
DOI | 10.1109/WI-IAT.2015.166 |
语种 | 英语 |
引用统计 | |
文献类型 | 会议论文 |
条目标识符 | http://ir.psych.ac.cn/handle/311026/26555 |
专题 | 社会与工程心理学研究室 |
作者单位 | 1.Henan Univ, Inst Psychol, Chinese Acad Sci, Sch Comp & Informat Engn, Kaifeng, Peoples R China 2.Beijing Forestry Univ, Dept Psychol, Beijing, Peoples R China 3.Univ New South Wales, Black Dog Inst, Sydney, NSW 2052, Australia 4.Lanzhou Univ, Sch Informat Sci & Engn, Lanzhou 730000, Peoples R China 5.Chinese Acad Sci, Inst Comp Technol, Inst Psychol, Beijing, Peoples R China |
推荐引用方式 GB/T 7714 | Hu, Q ,Li, A ,Heng, F ,et al. Predicting Depression of Social Media User on Different Observation Windows[C],2015:361-364. |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论