PSYCH OpenIR  > 脑与认知科学国家重点实验室
The Machine Knows What You Are Hiding: An Automatic Micro-expression Recognition System
Wu, Q (Wu, Qi); Shen, XB (Shen, Xunbing); Fu, XL (Fu, Xiaolan)
2011
通讯作者邮箱fuxl@psych.ac.cn
会议名称4th Bi-Annual International Conference of the Humaine Association on Affective Computing and Intelligent Interaction (ACII 2011)
会议录名称Lecture Notes in Computer Science
页码152-162
会议日期OCT 09-12, 2011
会议地点Memphis, TN
摘要

Micro-expressions are one of the most important behavioral clues for lie and dangerous demeanor detections. However, it is difficult for humans to detect micro-expressions. In this paper, a new approach for automatic micro-expression recognition is presented. The system is fully automatic and operates in frame by frame manner. It automatically locates the face and extracts the features by using Gabor filters. GentleSVM is then employed to identify micro-expressions. As for spotting, the system obtained 95.83% accuracy. As for recognition, the system showed 85.42% accuracy which was higher than the performance of trained human subjects. To further improve the performance, a more representative training set, a more sophisticated testing bed, and an accurate image alignment method should be focused in future research.

关键词Micro-expression Mutual Information Dynamical Weight Trimming Gentlesvm Gabor Filters
文献类型会议论文
条目标识符http://ir.psych.ac.cn/handle/311026/26743
专题脑与认知科学国家重点实验室
作者单位Chinese Acad Sci, Inst Psychol, State Key Lab Brain & Cognit Sci, Beijing 100101, Peoples R China
推荐引用方式
GB/T 7714
Wu, Q ,Shen, XB ,Fu, XL . The Machine Knows What You Are Hiding: An Automatic Micro-expression Recognition System[C],2011:152-162.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
2011TheMachineKnowsW(410KB)会议论文 限制开放CC BY-NC-SA请求全文
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Wu, Q (Wu, Qi)]的文章
[Shen, XB (Shen, Xunbing)]的文章
[Fu, XL (Fu, Xiaolan)]的文章
百度学术
百度学术中相似的文章
[Wu, Q (Wu, Qi)]的文章
[Shen, XB (Shen, Xunbing)]的文章
[Fu, XL (Fu, Xiaolan)]的文章
必应学术
必应学术中相似的文章
[Wu, Q (Wu, Qi)]的文章
[Shen, XB (Shen, Xunbing)]的文章
[Fu, XL (Fu, Xiaolan)]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。