PSYCH OpenIR  > 中国科学院心理健康重点实验室
Photoplethysmography based psychological stress detection with pulse rate variability feature differences and elastic net
Li, Fenghua1,2; Xu, Peida3; Zheng, Shichun1,2; Chen, Wenfeng4; Yan, Yang1,2; Lu, Suo1,2; Liu, Zhengkui1
2018-09-27
发表期刊INTERNATIONAL JOURNAL OF DISTRIBUTED SENSOR NETWORKS
ISSN1550-1477
卷号14期号:9页码:14
摘要Detecting psychological stress in daily life is useful to stress management. However, existing stress-detection models with only heartbeat/pulse input are limited in prediction output granularity, and models with multiple prediction levels output usually require additional bio-signal other than heartbeat, which may increase the number of sensors and be wearable unfriendly. In this study, we took a novel approach of incremental pulse rate variability and elastic-net regression in predicting mental stress. Mental arithmetic task paradigm was used during the experiments. A total of 178 participants involved in the model building, and the model was verified with a group of 29 participants in the laboratory and 40 participants in a 14-day follow-up field test. The result showed significant median correlations between self-report and model-prediction stress levels (cross-validation: r=0.72 (p<0.0001), laboratory verification: r=0.70 (p<0.0001), field test r=0.56 (p<0.0001)) with fine granularity ratings of 0-7 float numbers. The correct prediction took 86%-91% of the testing samples with error standard deviation of 0.68-0.81 in the label space of 14. By simplifying the process of prediction with a perspective of stress difference and handling the collinearity among pulse rate variability features with elastic net, we successfully built a stress prediction model with only pulse rate variability input source, fine granularity output and portable friendly sensor.
关键词Heart rate variability stress detection regression field test photoplethysmography
DOI10.1177/1550147718803298
语种英语
项目资助者Evaluation and Intervention Technology Research for Post-traumatic Stress Patients Population project ; Shenzhen Science and Technology Innovation Commission
资助项目Evaluation and Intervention Technology Research for Post-traumatic Stress Patients Population project[JCYJ20170413170301569] ; Shenzhen Science and Technology Innovation Commission
WOS研究方向Computer Science ; Telecommunications
WOS类目Computer Science, Information Systems ; Telecommunications
WOS记录号WOS:000446031400001
出版者SAGE PUBLICATIONS INC
关键词[WOS]HEART-RATE-VARIABILITY ; TERM HRV ANALYSIS ; PSYCHOSOCIAL STRESS ; PHYSIOLOGICAL SIGNALS ; PERCEIVED STRESS ; RATING-SCALE ; CLASSIFIERS ; RESPONSES ; SYSTEM
引用统计
文献类型期刊论文
条目标识符http://ir.psych.ac.cn/handle/311026/27124
专题中国科学院心理健康重点实验室
通讯作者Liu, Zhengkui
作者单位1.Chinese Acad Sci, Inst Psychol, Key Lab Mental Hlth, 218 South Block,16 Lincui Rd, Beijing 100101, Peoples R China
2.Univ Chinese Acad Sci, Beijing, Peoples R China
3.Huawei Device Dongguan Co Ltd, Shenzhen, Peoples R China
4.Chinese Acad Sci, Inst Psychol, State Key Lab Brain & Cognit Sci, Beijing, Peoples R China
推荐引用方式
GB/T 7714
Li, Fenghua,Xu, Peida,Zheng, Shichun,et al. Photoplethysmography based psychological stress detection with pulse rate variability feature differences and elastic net[J]. INTERNATIONAL JOURNAL OF DISTRIBUTED SENSOR NETWORKS,2018,14(9):14.
APA Li, Fenghua.,Xu, Peida.,Zheng, Shichun.,Chen, Wenfeng.,Yan, Yang.,...&Liu, Zhengkui.(2018).Photoplethysmography based psychological stress detection with pulse rate variability feature differences and elastic net.INTERNATIONAL JOURNAL OF DISTRIBUTED SENSOR NETWORKS,14(9),14.
MLA Li, Fenghua,et al."Photoplethysmography based psychological stress detection with pulse rate variability feature differences and elastic net".INTERNATIONAL JOURNAL OF DISTRIBUTED SENSOR NETWORKS 14.9(2018):14.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Li, Fenghua]的文章
[Xu, Peida]的文章
[Zheng, Shichun]的文章
百度学术
百度学术中相似的文章
[Li, Fenghua]的文章
[Xu, Peida]的文章
[Zheng, Shichun]的文章
必应学术
必应学术中相似的文章
[Li, Fenghua]的文章
[Xu, Peida]的文章
[Zheng, Shichun]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。