PSYCH OpenIR  > 中国科学院行为科学重点实验室
Expectation Learning and Crossmodal Modulation with a Deep Adversarial Network
Barros, Pablo1; Parisi, German I.1; Fu, Di2,3; Liu, Xun2,3; Wermter, Stefan1
2018-10-01
会议名称2018 International Joint Conference on Neural Networks, IJCNN 2018
会议录名称Proceedings of the International Joint Conference on Neural Networks
会议日期July 8, 2018 - July 13, 2018
会议地点Rio de Janeiro, Brazil
会议举办国Brazil
出版者Institute of Electrical and Electronics Engineers Inc.
产权排序2
摘要The human brain is able to learn, generalize, and predict crossmodal stimuli which help us to understand the world around us. Some characteristics of crossmodal learning inspired some computational models but most of the solutions only go as far as to implement strategies for early or late crossmodal fusion. In this paper, we propose the use of two mechanisms from behavioral psychology to enhance the capabilities of a deep adversarial network to learn crossmodal stimuli: The unity assumption modulation and expectation learning. We use real-world data to train and evaluate our model in a set of experiments and demonstrate how these mechanisms affect the learning behavior of the model and how they contribute to making it learn crossmodal coincident stimuli. Our experiments show that the addition of these two mechanisms modulates the crossmodal binding capabilities of the model and improves the learning of unisensory descriptors. © 2018 IEEE.
学科领域Behavioral Research
DOI10.1109/IJCNN.2018.8489303
收录类别EI
语种英语
EI主题词Modulation
引用统计
文献类型会议论文
条目标识符https://ir.psych.ac.cn/handle/311026/27743
专题中国科学院行为科学重点实验室
作者单位1.Knowledge Technology, Department of Informatics, University of Hamburg, Hamburg, Germany;
2.CAS Key Laboratory of Behavioral Science, Institute of Psychology, Beijing, China;
3.Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
推荐引用方式
GB/T 7714
Barros, Pablo,Parisi, German I.,Fu, Di,et al. Expectation Learning and Crossmodal Modulation with a Deep Adversarial Network[C]:Institute of Electrical and Electronics Engineers Inc.,2018.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Barros, Pablo]的文章
[Parisi, German I.]的文章
[Fu, Di]的文章
百度学术
百度学术中相似的文章
[Barros, Pablo]的文章
[Parisi, German I.]的文章
[Fu, Di]的文章
必应学术
必应学术中相似的文章
[Barros, Pablo]的文章
[Parisi, German I.]的文章
[Fu, Di]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。