PSYCH OpenIR  > 认知与发展心理学研究室
SMEConvNet: A Convolutional Neural Network for Spotting Spontaneous Facial Micro-Expression From Long Videos
Zhang, Zhihao1,2; Chen, Tong1,2,3; Meng, Hongying1,4; Liu, Guangyuan1,2; Fu, Xiaolan3,5
通讯作者Chen, Tong(c_tong@swu.edu.cn)
2018
发表期刊IEEE ACCESS
ISSN2169-3536
卷号6页码:71143-71151
摘要Micro-expression is a subtle and involuntary facial expression that may reveal the hidden emotion of human beings. Spotting micro-expression means to locate the moment when the micro-expression happens, which is a primary step for micro-expression recognition. Previous work in micro-expression spotting focus on spotting micro-expression from short video, and with hand-crafted features. In this paper, we present a methodology for spotting micro-expression from long videos. Specifically, a new convolutional neural network named spotting micro-expression convolutional network was designed for extracting features from video clips, which is the first time that deep learning is used in micro-expression spotting. Then, a feature matrix processing method was proposed for spotting the apex frame from long video, which uses a sliding window and takes the characteristics of micro-expression into account to search the apex frame. Experimental results demonstrate that the proposed method can achieve a better performance than the existing state-of-art methods.
关键词Spotting micro-expression apex frame convolutional neural network deep learning
DOI10.1109/ACCESS.2018.2879485
收录类别SCI
语种英语
项目资助者National Natural Science Foundation of China ; National Natural Science Foundation of China (NSFC) ; German Research Foundation (DFG)
资助项目National Natural Science Foundation of China[61301297] ; National Natural Science Foundation of China[61502398] ; National Natural Science Foundation of China (NSFC) ; German Research Foundation (DFG)[NSFC 6162113608/DFG TRR-169]
WOS研究方向Computer Science ; Engineering ; Telecommunications
WOS类目Computer Science, Information Systems ; Engineering, Electrical & Electronic ; Telecommunications
WOS记录号WOS:000453304600001
出版者IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
关键词[WOS]RECOGNITION
引用统计
文献类型期刊论文
条目标识符http://ir.psych.ac.cn/handle/311026/27769
专题认知与发展心理学研究室
通讯作者Chen, Tong
作者单位1.Southwest Univ, Chongqing Key Lab Nonlinear Circuit & Intelligent, Chongqing 400715, Peoples R China
2.Chongqing Key Lab Artificial Intelligence & Serv, Chongqing 400715, Peoples R China
3.Chinese Acad Sci, Inst Psychol, Beijing 100101, Peoples R China
4.Brunel Univ London, Dept Elect & Comp Engn, London UB8 3PH, England
5.Univ Chinese Acad Sci, Dept Psychol, Beijing 100049, Peoples R China
推荐引用方式
GB/T 7714
Zhang, Zhihao,Chen, Tong,Meng, Hongying,et al. SMEConvNet: A Convolutional Neural Network for Spotting Spontaneous Facial Micro-Expression From Long Videos[J]. IEEE ACCESS,2018,6:71143-71151.
APA Zhang, Zhihao,Chen, Tong,Meng, Hongying,Liu, Guangyuan,&Fu, Xiaolan.(2018).SMEConvNet: A Convolutional Neural Network for Spotting Spontaneous Facial Micro-Expression From Long Videos.IEEE ACCESS,6,71143-71151.
MLA Zhang, Zhihao,et al."SMEConvNet: A Convolutional Neural Network for Spotting Spontaneous Facial Micro-Expression From Long Videos".IEEE ACCESS 6(2018):71143-71151.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
SMEConvNet_ A Convol(7031KB)期刊论文出版稿限制开放CC BY-NC-SA浏览 请求全文
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Zhang, Zhihao]的文章
[Chen, Tong]的文章
[Meng, Hongying]的文章
百度学术
百度学术中相似的文章
[Zhang, Zhihao]的文章
[Chen, Tong]的文章
[Meng, Hongying]的文章
必应学术
必应学术中相似的文章
[Zhang, Zhihao]的文章
[Chen, Tong]的文章
[Meng, Hongying]的文章
相关权益政策
暂无数据
收藏/分享
文件名: SMEConvNet_ A Convolutional Neural Network for Spotting Spontaneous Facial Micro-Expression from Long Videos.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。