Institutional Repository of Key Laboratory of Behavioral Science, CAS
Discriminative Spatiotemporal Local Binary Pattern with Revisited Integral Projection for Spontaneous Facial Micro-Expression Recognition | |
Huang, Xiaohua1,2; Wang, Su-Jing3,4![]() ![]() | |
第一作者 | Xiaohua Huang |
通讯作者邮箱 | guoying.zhao@oulu.fi |
心理所单位排序 | 3 |
摘要 | Recently, there have been increasing interests in inferring mirco-expression from facial image sequences. Due to subtle facial movement of micro-expressions, feature extraction has become an important and critical issue for spontaneous facial micro-expression recognition. Recent works used spatiotemporal local binary pattern (STLBP) for micro-expression recognition and considered dynamic texture information to represent face images. However, they miss the shape attribute of face images. On the other hand, they extract the spatiotemporal features from the global face regions while ignore the discriminative information between two micro-expression classes. The above-mentioned problems seriously limit the application of STLBP to micro-expression recognition. In this paper, we propose a discriminative spatiotemporal local binary pattern based on an integral projection to resolve the problems of STLBP for micro-expression recognition. First, we revisit an integral projection for preserving the shape attribute of micro-expressions by using robust principal component analysis. Furthermore, a revisited integral projection is incorporated with local binary pattern across spatial and temporal domains. Specifically, we extract the novel spatiotemporal features incorporating shape attributes into spatiotemporal texture features. For increasing the discrimination of micro-expressions, we propose a new feature selection based on Laplacian method to extract the discriminative information for facial micro-expression recognition. Intensive experiments are conducted on three availably published micro-expression databases including CASME, CASME2 and SMIC databases. We compare our method with the state-of-the-art algorithms. Experimental results demonstrate that our proposed method achieves promising performance for micro-expression recognition. |
关键词 | Spontaneous facial micro-expression spatiotemporal local binary pattern integral projection feature selection |
2019 | |
语种 | 英语 |
DOI | 10.1109/TAFFC.2017.2713359 |
发表期刊 | IEEE TRANSACTIONS ON AFFECTIVE COMPUTING
![]() |
ISSN | 1949-3045 |
卷号 | 10期号:1页码:32-47 |
期刊论文类型 | Article |
收录类别 | SCI |
出版者 | IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC |
WOS关键词 | OPTICAL-FLOW ; TEXTURE |
WOS研究方向 | Computer Science |
WOS类目 | Computer Science, Artificial Intelligence ; Computer Science, Cybernetics |
WOS记录号 | WOS:000461333200006 |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | https://ir.psych.ac.cn/handle/311026/28805 |
专题 | 中国科学院行为科学重点实验室 |
通讯作者 | Zhao, Guoying |
作者单位 | 1.Nanjing Inst Technol, Sch Comp Engn, Nanjing 21167, Jiangsu, Peoples R China 2.Univ Oulu, FI-90014 Oulu, Finland 3.Inst Psychol, CAS Key Lab Behav Sci, Beijing 100101, Peoples R China 4.Univ Chinese Acad Sci, Dept Psychol, Beijing 100101, Peoples R China 5.Univ Oulu, Ctr Machine Vis & Signal Anal, FI-90014 Oulu, Finland 6.Northwest Univ, Sch Informat & Technol, Xian 710065, Shaanxi, Peoples R China 7.Northwestern Polytech Univ, Sch Elect & Informat, Xian 710065, Shaanxi, Peoples R China |
推荐引用方式 GB/T 7714 | Huang, Xiaohua,Wang, Su-Jing,Liu, Xin,et al. Discriminative Spatiotemporal Local Binary Pattern with Revisited Integral Projection for Spontaneous Facial Micro-Expression Recognition[J]. IEEE TRANSACTIONS ON AFFECTIVE COMPUTING,2019,10(1):32-47. |
APA | Huang, Xiaohua,Wang, Su-Jing,Liu, Xin,Zhao, Guoying,Feng, Xiaoyi,&Pietikainen, Matti.(2019).Discriminative Spatiotemporal Local Binary Pattern with Revisited Integral Projection for Spontaneous Facial Micro-Expression Recognition.IEEE TRANSACTIONS ON AFFECTIVE COMPUTING,10(1),32-47. |
MLA | Huang, Xiaohua,et al."Discriminative Spatiotemporal Local Binary Pattern with Revisited Integral Projection for Spontaneous Facial Micro-Expression Recognition".IEEE TRANSACTIONS ON AFFECTIVE COMPUTING 10.1(2019):32-47. |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | ||
Discriminative Spati(6341KB) | 期刊论文 | 作者接受稿 | 开放获取 | CC BY-NC-SA | 浏览 下载 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论