PSYCH OpenIR  > 社会与工程心理学研究室
Volume of motor area predicts motor impulsivity
Ai, Hui1; Xin, Yuanyuan1,2; Luo, Yue-jia1,3,4; Gu, Ruolei5,6; Xu, Pengfei1,2,3
Corresponding AuthorGu, Ruolei(gurl@psych.ac.cn) ; Xu, Pengfei(xupf@szu.edu.cn)
AbstractImpulsivity is a personality trait associated with many maladaptive behaviors. Trait impulsivity is typically divided into three different dimensions, including attentional impulsiveness, motor impulsiveness, and non-planning impulsiveness. In the present study, we examined the neuroanatomical basis of the multidimensional impulsivity trait. Eighty-four healthy participants were studied with structural magnetic resonance imaging. Multiple regression analyses revealed that the score of motor impulsiveness was negatively correlated with gray matter volumes of the right supplementary motor area and paracentral lobule. A machine-learning-based prediction analysis indicated that decreased gray matter volumes of the supplementary motor area and paracentral lobule strongly predicted the decrease in motor impulsiveness control. Our findings provide insights into the predictive role of motor brain structures in motor impulsivity and inhibition control.
Keywordbrain volume motor impulsiveness prediction analysis
2019-06-01
Language英语
DOI10.1111/ejn.14339
Source PublicationEUROPEAN JOURNAL OF NEUROSCIENCE
ISSN0953-816X
Volume49Issue:11Pages:1470-1476
Indexed BySCI ; SCI
Funding ProjectNational Natural Science Foundation of China[31500920] ; National Natural Science Foundation of China[31530031] ; National Natural Science Foundation of China[31571124] ; National Natural Science Foundation of China[31671133] ; National Natural Science Foundation of China[31700959] ; National Natural Science Foundation of China[31871137] ; National Natural Science Foundation of China[81471376] ; Shenzhen Peacock Program[827-000235] ; Shenzhen Peacock Program[KQTD2015033016104926] ; Natural Science Foundation of Shenzhen University[8530300000275] ; Zhujiang Talent Project for Postdoctoral researchers, Guangdong young Innovative Talent Project[2016KQNCX149] ; Shenzhen Science and Technology Research Funding Program[JCYJ20170412164413575] ; Shenzhen Science and Technology Research Funding Program[JCYJ20170307155304424]
PublisherWILEY
WOS KeywordFUNCTIONAL CONNECTIVITY ; INDIVIDUAL-DIFFERENCES ; NEURAL BASIS ; SCALE ; EXTENT
WOS Research AreaNeurosciences & Neurology
WOS SubjectNeurosciences
WOS IDWOS:000477742100009
Citation statistics
Cited Times:3[WOS]   [WOS Record]     [Related Records in WOS]
Document Type期刊论文
Identifierhttp://ir.psych.ac.cn/handle/311026/29093
Collection社会与工程心理学研究室
Corresponding AuthorGu, Ruolei; Xu, Pengfei
Affiliation1.Shenzhen Univ, Ctr Brain Disorders & Cognit Sci, Shenzhen Key Lab Affect & Social Neurosci, Shenzhen, Peoples R China
2.Univ Groningen, Univ Med Ctr Groningen, Dept Neurosci, Groningen, Netherlands
3.Shenzhen Inst Neurosci, Ctr Emot & Brain, Shenzhen, Peoples R China
4.Kunming Univ Sci & Technol, Med Sch, Kunming, Yunnan, Peoples R China
5.Chinese Acad Sci, Inst Psychol, Key Lab Behav Sci, Beijing, Peoples R China
6.Univ Chinese Acad Sci, Dept Psychol, Beijing, Peoples R China
Corresponding Author AffilicationKey Laboratory of Behavioral Science, CAS
Recommended Citation
GB/T 7714
Ai, Hui,Xin, Yuanyuan,Luo, Yue-jia,et al. Volume of motor area predicts motor impulsivity[J]. EUROPEAN JOURNAL OF NEUROSCIENCE,2019,49(11):1470-1476.
APA Ai, Hui,Xin, Yuanyuan,Luo, Yue-jia,Gu, Ruolei,&Xu, Pengfei.(2019).Volume of motor area predicts motor impulsivity.EUROPEAN JOURNAL OF NEUROSCIENCE,49(11),1470-1476.
MLA Ai, Hui,et al."Volume of motor area predicts motor impulsivity".EUROPEAN JOURNAL OF NEUROSCIENCE 49.11(2019):1470-1476.
Files in This Item:
File Name/Size DocType Version Access License
EJN proof_Ruolei 201(837KB)期刊论文作者接受稿限制开放CC BY-NC-SAApplication Full Text
Related Services
Recommend this item
Bookmark
Usage statistics
Export to Endnote
Google Scholar
Similar articles in Google Scholar
[Ai, Hui]'s Articles
[Xin, Yuanyuan]'s Articles
[Luo, Yue-jia]'s Articles
Baidu academic
Similar articles in Baidu academic
[Ai, Hui]'s Articles
[Xin, Yuanyuan]'s Articles
[Luo, Yue-jia]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[Ai, Hui]'s Articles
[Xin, Yuanyuan]'s Articles
[Luo, Yue-jia]'s Articles
Terms of Use
No data!
Social Bookmark/Share
All comments (0)
No comment.
 

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.