PSYCH OpenIR
基于脑结构像的精神分裂症机器学习分类
Alternative TitleThe classification of schizophrenia based on brain structural features:A machine learning approach
郑泓1,2; 蒲城城3; 王毅1,2; 陈楚侨1,2
First Author郑泓
Correspondent Emailwangyi@psych.ac.cn
Contribution Rank1
Abstract

将机器学习应用于精神疾患的临床和基础研究是近年来的趋势。研究者将机器学习应用于精神分裂症患者及高危人群的T1加权像和弥散张量成像的脑影像数据中,为了解疾病的生理病理学机制提供帮助。回顾以往研究发现额叶及颞叶的脑结构特征具有较高的区分能力,行为数据和脑影像数据结合的分类效果优于单模态数据。现阶段研究存在样本量不足和泛化能力欠缺的局限,未来研究应注意扩大样本量、制定标准化的分类方法,从而进一步探究机器学习在精神疾患中的作用。

Other Abstract

Machine learning is a promising approach for mental disorders. In recent years, machine learning based on T1 weighted imaging and Diffusion Tensor Imaging (DTI) data has been used to investigate the psychopathology and underlying mechanisms of schizophrenia patients and high-risk population. The findings from the previous literature suggest that structural features of frontal lobe and temporal lobe can improve classification performance. In addition, the combination of behavioural performances and the features of brain structure is superior to the single-modality structural images on classification accuracy. However, the existing empirical studies classifying schizophrenia patients or high-risk population from controls are limited in sample size and generalization ability.

Keyword脑结构像 弥散张量成像 机器学习 精神分裂症 高危人群
2019
Language中文
DOI10.3724/SP.J.1042.2020.00252
Source Publication心理科学进展
ISSN1671-3710
Volume28Issue:2Pages:252-265
Subtypearticle
Indexed ByCSCD
Funding Project精神分裂症患者及高危群体的共情缺损:一项探讨社会认知过程及其神经机制的研究 ; 纹状体功能连接在精神分裂症谱系社会认知缺损中的作用及机制研究 ; 纹状体功能连接在精神分裂症谱系社会认知缺损中的作用及机制研究 ; 精神分裂症患者及高危群体的共情缺损:一项探讨社会认知过程及其神经机制的研究
CSCD IDCSCD:6676559
Citation statistics
Document Type期刊论文
Identifierhttp://ir.psych.ac.cn/handle/311026/31906
Collection中国科学院心理研究所
Corresponding Author郑泓
Affiliation1.中国科学院心理研究所心理健康重点实验室, 神经心理学与认知神经科学研究室
2.中国科学院大学心理系
3.北京大学第六医院, 北京大学精神卫生研究所, 国家卫生健康委员会精神卫生学重点实验室(北京大学), 国家精神心理疾病临床医学研究中心(北京大学第六医院)
First Author AffilicationKey Laboratory of Mental Health, CAS
Corresponding Author AffilicationKey Laboratory of Mental Health, CAS
Recommended Citation
GB/T 7714
郑泓,蒲城城,王毅,等. 基于脑结构像的精神分裂症机器学习分类[J]. 心理科学进展,2019,28(2):252-265.
APA 郑泓,蒲城城,王毅,&陈楚侨.(2019).基于脑结构像的精神分裂症机器学习分类.心理科学进展,28(2),252-265.
MLA 郑泓,et al."基于脑结构像的精神分裂症机器学习分类".心理科学进展 28.2(2019):252-265.
Files in This Item:
File Name/Size DocType Version Access License
基于脑结构像的精神分裂症机器学习分类.p(2508KB)期刊论文出版稿限制开放CC BY-NC-SAApplication Full Text
Related Services
Recommend this item
Bookmark
Usage statistics
Export to Endnote
Google Scholar
Similar articles in Google Scholar
[郑泓]'s Articles
[蒲城城]'s Articles
[王毅]'s Articles
Baidu academic
Similar articles in Baidu academic
[郑泓]'s Articles
[蒲城城]'s Articles
[王毅]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[郑泓]'s Articles
[蒲城城]'s Articles
[王毅]'s Articles
Terms of Use
No data!
Social Bookmark/Share
All comments (0)
No comment.
 

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.