PSYCH OpenIR  > 中国科学院行为科学重点实验室
MESNet: A Convolutional Neural Network for Spotting Multi-Scale Micro-Expression Intervals in Long Videos
Wang, Su-Jing1,2; He, Ying1; Li, Jingting1; Fu, Xiaolan1,2
第一作者Wang, Su-Jing
心理所单位排序1
摘要

Micro-expression spotting is a fundamental step in the micro-expression analysis. This paper proposes a novel network based convolutional neural network (CNN) for spotting multi-scale spontaneous micro-expression intervals in long videos. We named the network as Micro-Expression Spotting Network (MESNet). It is composed of three modules. The first module is a 2+1D Spatiotemporal Convolutional Network, which uses 2D convolution to extract spatial features and 1D convolution to extract temporal features. The second module is a Clip Proposal Network, which gives some proposed micro-expression clips. The last module is a Classification Regression Network, which classifies the proposed clips to micro-expression or not, and further regresses their temporal boundaries. We also propose a novel evaluation metric for spotting micro-expression. Extensive experiments have been conducted on the two long video datasets: CAS(ME)2 and SAMM, and the leave-one-subject-out cross-validation is used to evaluate the spotting performance. Results show that the proposed MESNet effectively enhances the F1-score metric. And comparative results show the proposed MESNet has achieved a good performance, which outperforms other state-of-the-art methods, especially in the SAMM dataset.

关键词Convolutional neural network deep learning detection long videos micro-expression spotting
2021
DOI10.1109/TIP.2021.3064258
发表期刊IEEE transactions on image processing
ISSN1941-0042
卷号30页码:3956-3969
期刊论文类型实证研究
收录类别SCI ; EI
资助项目National Natural Science Foundation of China[U19B2032] ; National Natural Science Foundation of China[61772511] ; National Natural Science Foundation of China[62061136001] ; China Postdoctoral Science Foundation[2020M680738] ; National Key Research and Development Project[2018AAA0100205]
出版者IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
WOS研究方向Computer Science ; Engineering
WOS类目Computer Science, Artificial Intelligence ; Engineering, Electrical & Electronic
WOS记录号WOS:000637528700001
WOS分区Q1
引用统计
被引频次:74[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符https://ir.psych.ac.cn/handle/311026/38736
专题中国科学院行为科学重点实验室
作者单位1.Key Laboratory of Behavior Sciences, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
2.Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
第一作者单位中国科学院心理研究所
推荐引用方式
GB/T 7714
Wang, Su-Jing,He, Ying,Li, Jingting,et al. MESNet: A Convolutional Neural Network for Spotting Multi-Scale Micro-Expression Intervals in Long Videos[J]. IEEE transactions on image processing,2021,30:3956-3969.
APA Wang, Su-Jing,He, Ying,Li, Jingting,&Fu, Xiaolan.(2021).MESNet: A Convolutional Neural Network for Spotting Multi-Scale Micro-Expression Intervals in Long Videos.IEEE transactions on image processing,30,3956-3969.
MLA Wang, Su-Jing,et al."MESNet: A Convolutional Neural Network for Spotting Multi-Scale Micro-Expression Intervals in Long Videos".IEEE transactions on image processing 30(2021):3956-3969.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
MESNet_ A Convolutio(1846KB)期刊论文出版稿开放获取CC BY-NC-SA浏览 下载
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Wang, Su-Jing]的文章
[He, Ying]的文章
[Li, Jingting]的文章
百度学术
百度学术中相似的文章
[Wang, Su-Jing]的文章
[He, Ying]的文章
[Li, Jingting]的文章
必应学术
必应学术中相似的文章
[Wang, Su-Jing]的文章
[He, Ying]的文章
[Li, Jingting]的文章
相关权益政策
暂无数据
收藏/分享
文件名: MESNet_ A Convolutional Neural Network for Spotting Multi-Scale Micro-Expression Intervals in Long Videos.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。