Institutional Repository of Key Laboratory of Behavioral Science, CAS
MESNet: A Convolutional Neural Network for Spotting Multi-Scale Micro-Expression Intervals in Long Videos | |
Wang, Su-Jing1,2![]() ![]() ![]() | |
第一作者 | Wang, Su-Jing |
心理所单位排序 | 1 |
摘要 | Micro-expression spotting is a fundamental step in the micro-expression analysis. This paper proposes a novel network based convolutional neural network (CNN) for spotting multi-scale spontaneous micro-expression intervals in long videos. We named the network as Micro-Expression Spotting Network (MESNet). It is composed of three modules. The first module is a 2+1D Spatiotemporal Convolutional Network, which uses 2D convolution to extract spatial features and 1D convolution to extract temporal features. The second module is a Clip Proposal Network, which gives some proposed micro-expression clips. The last module is a Classification Regression Network, which classifies the proposed clips to micro-expression or not, and further regresses their temporal boundaries. We also propose a novel evaluation metric for spotting micro-expression. Extensive experiments have been conducted on the two long video datasets: CAS(ME)2 and SAMM, and the leave-one-subject-out cross-validation is used to evaluate the spotting performance. Results show that the proposed MESNet effectively enhances the F1-score metric. And comparative results show the proposed MESNet has achieved a good performance, which outperforms other state-of-the-art methods, especially in the SAMM dataset. |
关键词 | Convolutional neural network deep learning detection long videos micro-expression spotting |
2021 | |
DOI | 10.1109/TIP.2021.3064258 |
发表期刊 | IEEE transactions on image processing
![]() |
ISSN | 1941-0042 |
卷号 | 30页码:3956-3969 |
期刊论文类型 | 实证研究 |
收录类别 | SCI ; EI |
资助项目 | National Natural Science Foundation of China[U19B2032] ; National Natural Science Foundation of China[61772511] ; National Natural Science Foundation of China[62061136001] ; China Postdoctoral Science Foundation[2020M680738] ; National Key Research and Development Project[2018AAA0100205] |
出版者 | IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC |
WOS研究方向 | Computer Science ; Engineering |
WOS类目 | Computer Science, Artificial Intelligence ; Engineering, Electrical & Electronic |
WOS记录号 | WOS:000637528700001 |
WOS分区 | Q1 |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | https://ir.psych.ac.cn/handle/311026/38736 |
专题 | 中国科学院行为科学重点实验室 |
作者单位 | 1.Key Laboratory of Behavior Sciences, Institute of Psychology, Chinese Academy of Sciences, Beijing, China 2.Department of Psychology, University of Chinese Academy of Sciences, Beijing, China |
第一作者单位 | 中国科学院心理研究所 |
推荐引用方式 GB/T 7714 | Wang, Su-Jing,He, Ying,Li, Jingting,et al. MESNet: A Convolutional Neural Network for Spotting Multi-Scale Micro-Expression Intervals in Long Videos[J]. IEEE transactions on image processing,2021,30:3956-3969. |
APA | Wang, Su-Jing,He, Ying,Li, Jingting,&Fu, Xiaolan.(2021).MESNet: A Convolutional Neural Network for Spotting Multi-Scale Micro-Expression Intervals in Long Videos.IEEE transactions on image processing,30,3956-3969. |
MLA | Wang, Su-Jing,et al."MESNet: A Convolutional Neural Network for Spotting Multi-Scale Micro-Expression Intervals in Long Videos".IEEE transactions on image processing 30(2021):3956-3969. |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | ||
MESNet_ A Convolutio(1846KB) | 期刊论文 | 出版稿 | 开放获取 | CC BY-NC-SA | 浏览 下载 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论