PSYCH OpenIR  > 健康与遗传心理学研究室
Psychological Stress Detection According to ECG Using a Deep Learning Model with Attention Mechanism
Zhang, Pengfei1,2; Li, Fenghua3; Du, Lidong1,4; Zhao, Rongjian1,2; Chen, Xianxiang1,4; Yang, Ting5; Fang, Zhen1,2,4
第一作者Zhang, Pengfei
通讯作者邮箱zfang@mail.ie.ac.cn (fang, zhen)
摘要

To satisfy the need to accurately monitor emotional stress, this paper explores the effectiveness of the attention mechanism based on the deep learning model CNN (Convolutional Neural Networks)-BiLSTM (Bi-directional Long Short-Term Memory) As different attention mechanisms can cause the framework to focus on different positions of the feature map, this discussion adds attention mechanisms to the CNN layer and the BiLSTM layer separately, and to both the CNN layer and BiLSTM layer simultaneously to generate different CNN-BiLSTM networks with attention mechanisms. ECG (electrocardiogram) data from 34 subjects were collected on the server platform created by the Institute of Psychology of the Chinese Academy of Science and the researches. It verifies that the average accuracy of CNN-BiLSTM is up to 0.865 without any attention mechanism, while the highest average accuracy of 0.868 is achieved using the CNN-attention-based BiLSTM.

关键词ECG psychological stress deep learning attention CNN BiLSTM
2021-03-01
语种英语
DOI10.3390/app11062848
发表期刊APPLIED SCIENCES-BASEL (IF:2.700[JCR-2022],2.900[5-Year])
卷号11期号:6页码:15
期刊论文类型实证研究
收录类别SCI
资助项目National Natural Science Foundation of China[2018YFC2001101] ; National Natural Science Foundation of China[2018YFC2001802] ; National Natural Science Foundation of China[2020YFC2003703] ; National Natural Science Foundation of China[2020YFC1512304] ; CAMS Innovation Fund for Medical Sciences[62071451] ; [2019-I2M-5-019]
出版者MDPI
WOS关键词DISORDERS
WOS研究方向Chemistry ; Engineering ; Materials Science ; Physics
WOS类目Chemistry, Multidisciplinary ; Engineering, Multidisciplinary ; Materials Science, Multidisciplinary ; Physics, Applied
WOS记录号WOS:000645715600001
WOS分区Q3
引用统计
被引频次:15[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符https://ir.psych.ac.cn/handle/311026/39298
专题健康与遗传心理学研究室
通讯作者Fang, Zhen
作者单位1.Chinese Acad Sci, Aerosp Informat Res Inst, Beijing 100000, Peoples R China
2.Univ Chinese Acad Sci, Sch Elect Elect & Commun Engn, Beijing 100000, Peoples R China
3.Chinese Acad Sci, Inst Psychol, Beijing 100000, Peoples R China
4.Chinese Acad Med Sci, Personalized Management Chron Resp Dis, Beijing 100000, Peoples R China
5.China Japan Friendship Hosp, Beijing 100000, Peoples R China
推荐引用方式
GB/T 7714
Zhang, Pengfei,Li, Fenghua,Du, Lidong,et al. Psychological Stress Detection According to ECG Using a Deep Learning Model with Attention Mechanism[J]. APPLIED SCIENCES-BASEL,2021,11(6):15.
APA Zhang, Pengfei.,Li, Fenghua.,Du, Lidong.,Zhao, Rongjian.,Chen, Xianxiang.,...&Fang, Zhen.(2021).Psychological Stress Detection According to ECG Using a Deep Learning Model with Attention Mechanism.APPLIED SCIENCES-BASEL,11(6),15.
MLA Zhang, Pengfei,et al."Psychological Stress Detection According to ECG Using a Deep Learning Model with Attention Mechanism".APPLIED SCIENCES-BASEL 11.6(2021):15.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
Psychological Stress(5201KB)期刊论文作者接受稿开放获取CC BY-NC-SA浏览 下载
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Zhang, Pengfei]的文章
[Li, Fenghua]的文章
[Du, Lidong]的文章
百度学术
百度学术中相似的文章
[Zhang, Pengfei]的文章
[Li, Fenghua]的文章
[Du, Lidong]的文章
必应学术
必应学术中相似的文章
[Zhang, Pengfei]的文章
[Li, Fenghua]的文章
[Du, Lidong]的文章
相关权益政策
暂无数据
收藏/分享
文件名: Psychological Stress Detection According to ECG Using a Deep Learning Model with Attention Mechanism.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。