PSYCH OpenIR  > 健康与遗传心理学研究室
Real-Time Psychological Stress Detection According to ECG Using Deep Learning
Zhang, Pengfei1,2; Li, Fenghua3; Zhao, Rongjian1,2; Zhou, Ruishi1,2; Du, Lidong1; Zhao, Zhan1; Chen, Xianxiang1; Fang, Zhen1,2
第一作者Pengfei Zhang
通讯作者邮箱zhaorij@aircas.ac.cn (r.z.) ; zfang@mail.ie.ac.cn (z.f.)
心理所单位排序3
摘要

Today, excessive psychological stress has become a universal threat to humans. That stress can heavily affect work and study when a person repeatedly is exposed to high stress. If that exposure is long enough, it can even cause cardiovascular disease and cancer. Therefore, both monitoring and managing of stress is imperative to reduce the bad outcomes from excessive psychological stress. Conventional monitoring methods firstly extract the characteristics of the RR interval of an electrocardiogram (ECG) from a time domain and a frequency domain, then use machine learning models, like SVM, random forest, and decision tree, to distinguish the level of that stress. The biggest limitation of using these methods is that at least one minute of ECG data and other signals are indispensable to ensure the high accuracy of the results. This will greatly affect the real-time application of the models. To satisfy real-time detection of stress with high accuracy, we proposed a framework based on deep learning technology. The proposed monitoring framework is based on convolutional neural networks (CNN) and bidirectional long short-term memory (BiLSTM). To evaluate the performance of this network, we conducted the experiments applying conventional methods. The data for the 34 subjects were collected on the server platform created by the group at the Institute of Psychology of the Chinese Academy of Sciences and our group. The accuracy of the proposed framework was up to 0.865 on three levels of stress using a 10 s ECG signal, a 0.228 improvement compared with conventional methods. Therefore, our proposed framework is more suitable for real-time applications

关键词psychological stress deep learning CNN BiLSTM real-time
2021-05-01
语种英语
DOI10.3390/app11093838
发表期刊APPLIED SCIENCES-BASEL
卷号11期号:9页码:18
期刊论文类型实证研究
收录类别SCI
资助项目National Key Research and Development Project[2018YFC2001101] ; National Key Research and Development Project[2018YFC2001802] ; National Key Research and Development Project[2020YFC2003703] ; National Key Research and Development Project[2020YFC1512304] ; National Natural Science Foundation of China[62071451] ; CAMS Innovation Fund for Medical Sciences[2019-I2M-5-019]
出版者MDPI
WOS关键词DISORDERS
WOS研究方向Chemistry ; Engineering ; Materials Science ; Physics
WOS类目Chemistry, Multidisciplinary ; Engineering, Multidisciplinary ; Materials Science, Multidisciplinary ; Physics, Applied
WOS记录号WOS:000649928900001
WOS分区Q3
引用统计
被引频次:22[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符https://ir.psych.ac.cn/handle/311026/39357
专题健康与遗传心理学研究室
通讯作者Zhao, Rongjian; Fang, Zhen
作者单位1.Chinese Acad Sci, Aerosp Informat Res Inst, Beijing 100000, Peoples R China
2.Univ Chinese Acad Sci, Sch Elect Elect & Commun Engn, Beijing 100000, Peoples R China
3.Chinese Acad Sci, Inst Psychol, Beijing 100000, Peoples R China
推荐引用方式
GB/T 7714
Zhang, Pengfei,Li, Fenghua,Zhao, Rongjian,et al. Real-Time Psychological Stress Detection According to ECG Using Deep Learning[J]. APPLIED SCIENCES-BASEL,2021,11(9):18.
APA Zhang, Pengfei.,Li, Fenghua.,Zhao, Rongjian.,Zhou, Ruishi.,Du, Lidong.,...&Fang, Zhen.(2021).Real-Time Psychological Stress Detection According to ECG Using Deep Learning.APPLIED SCIENCES-BASEL,11(9),18.
MLA Zhang, Pengfei,et al."Real-Time Psychological Stress Detection According to ECG Using Deep Learning".APPLIED SCIENCES-BASEL 11.9(2021):18.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
Real-Time Psychologi(6777KB)期刊论文出版稿开放获取CC BY-NC-SA浏览 下载
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Zhang, Pengfei]的文章
[Li, Fenghua]的文章
[Zhao, Rongjian]的文章
百度学术
百度学术中相似的文章
[Zhang, Pengfei]的文章
[Li, Fenghua]的文章
[Zhao, Rongjian]的文章
必应学术
必应学术中相似的文章
[Zhang, Pengfei]的文章
[Li, Fenghua]的文章
[Zhao, Rongjian]的文章
相关权益政策
暂无数据
收藏/分享
文件名: Real-Time Psychological Stress Detection According to ECG Using Deep Learning.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。