PSYCH OpenIR  > 中国科学院行为科学重点实验室
Using i-vectors from voice features to identify major depressive disorder
Di, Yazheng1,2; Wang, Jingying3; Li, Weidong4; Zhu, Tingshao1,2
第一作者Di, Yazheng
通讯作者邮箱liwd@sjtu.edu.cn ; tszhu@psych.ac.cn
心理所单位排序1
摘要

Background: Machine-learning methods using acoustic features in the diagnosis of major depressive disorder (MDD) have insufficient evidence from large-scale samples and clinical trials. This study aimed to evaluate the effectiveness of the promising i-vector method on a large sample of women with recurrent MDD diagnosed clinically, examine its robustness, and provide an explicit acoustic explanation of the i-vectors. Methods: We collected utterances edited from clinical interview speech records of 785 depressed and 1,023 healthy individuals. Then, we extracted Mel-frequency cepstral coefficient (MFCC) features and MFCC i-vectors from their utterances. To examine the effectiveness of i-vectors, we compared the performance of binary logistic regression between MFCC i-vectors and MFCC features and tested its robustness on different utterance durations. We also determined the correlation between MFCC features and MFCC i-vectors to analyze the acoustic meaning of i-vectors. Results: The i-vectors improved 7% and 14% of area under the curve (AUC) for MFCC features using different utterances. When the duration is > 40 s, the classification results are stabilized. The i-vectors are consistently correlated to the maximum, minimum, and deviations of MFCC features (either positively or negatively). Limitations: This study included only women. Conclusions: The i-vectors can improve 14% of the AUC on a large-scale clinical sample. This system is robust to utterance duration > 40 s. This study provides a foundation for exploring the clinical application of voice features in the diagnosis of MDD.

关键词Depression Biological markers Clinical trials Computer internet technology Assessment Diagnosis
2021-06-01
DOI10.1016/j.jad.2021.04.004
发表期刊JOURNAL OF AFFECTIVE DISORDERS
ISSN0165-0327
卷号288页码:161-166
期刊论文类型实证研究
收录类别SCI
出版者ELSEVIER
WOS关键词MENTAL-DISORDERS ; EPIDEMIOLOGY ; SYMPTOMS ; DISEASE ; RISK ; CARE
WOS研究方向Neurosciences & Neurology ; Psychiatry
WOS类目Clinical Neurology ; Psychiatry
WOS记录号WOS:000655555400022
WOS分区Q1
引用统计
被引频次:21[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符https://ir.psych.ac.cn/handle/311026/39473
专题中国科学院行为科学重点实验室
通讯作者Li, Weidong; Zhu, Tingshao
作者单位1.Inst Psychol, CAS Key Lab Behav Sci, 16 Lincui Rd, Beijing 100101, Peoples R China
2.Chinese Acad Sci, Dept Psychol, Beijing 100049, Peoples R China
3.Hong Kong Polytech Univ, Sch Optometry, Hung Hom, Kowloon, Hong Kong, Peoples R China
4.Shanghai Jiao Tong Univ, 800 Dongchuan Rd, Shanghai 200240, Peoples R China
第一作者单位中国科学院行为科学重点实验室
通讯作者单位中国科学院行为科学重点实验室
推荐引用方式
GB/T 7714
Di, Yazheng,Wang, Jingying,Li, Weidong,et al. Using i-vectors from voice features to identify major depressive disorder[J]. JOURNAL OF AFFECTIVE DISORDERS,2021,288:161-166.
APA Di, Yazheng,Wang, Jingying,Li, Weidong,&Zhu, Tingshao.(2021).Using i-vectors from voice features to identify major depressive disorder.JOURNAL OF AFFECTIVE DISORDERS,288,161-166.
MLA Di, Yazheng,et al."Using i-vectors from voice features to identify major depressive disorder".JOURNAL OF AFFECTIVE DISORDERS 288(2021):161-166.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
Using i-vectors from(929KB)期刊论文出版稿开放获取CC BY-NC-SA浏览 下载
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Di, Yazheng]的文章
[Wang, Jingying]的文章
[Li, Weidong]的文章
百度学术
百度学术中相似的文章
[Di, Yazheng]的文章
[Wang, Jingying]的文章
[Li, Weidong]的文章
必应学术
必应学术中相似的文章
[Di, Yazheng]的文章
[Wang, Jingying]的文章
[Li, Weidong]的文章
相关权益政策
暂无数据
收藏/分享
文件名: Using i-vectors from voice features to identify major depressive disorder.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。