PSYCH OpenIR
Analysis of multiple phenotypes in genome-wide genetic mapping studies
Suo,Chen1,2; Toulopoulou,Timothea3,4,5; Bramon,Elvira6,7; Walshe,Muriel6,7; Picchioni,Marco6,7,8; Murray,Robin6,7; Ott,Jurg1
通讯作者Suo,Chen(chen.suo@ki.se)
摘要AbstractBackgroundComplex traits may be defined by a range of different criteria. It would result in a loss of information to perform analyses simply on the basis of a final clinical dichotomized affected / unaffected variable.ResultsWe assess the performance of four alternative approaches for the analysis of multiple phenotypes in genetic association studies. We describe the four methods in detail and discuss their relative theoretical merits and disadvantages. Using simulation we demonstrate that PCA provides the greatest power when applied to both correlated phenotypes and with large numbers of phenotypes. The multivariate approach had low type I error only with independent phenotypes or small numbers of phenotypes. In this study, our application of the four methods to schizophrenia data provides converging evidence of the relative performance of the methods.ConclusionsVia power analysis of simulated data and testing of experimental data, we conclude that PCA, creating one variable based on a linear combination of all the traits, performs optimally. We propose that our comparison will provide insight into the properties of the methods and help researchers to choose appropriate strategy in future experimental studies.
关键词Multiple phenotypes Statistical method Genetic mapping
2013-05-02
语种英语
DOI10.1186/1471-2105-14-151
发表期刊BMC Bioinformatics
ISSN1471-2105
卷号14期号:1
出版者BioMed Central
WOS记录号BMC:10.1186/1471-2105-14-151
引用统计
文献类型期刊论文
条目标识符http://ir.psych.ac.cn/handle/311026/41965
通讯作者Suo,Chen
作者单位1.Institute of Psychology, Chinese Academy of Sciences; Key Laboratory of Mental Health
2.Karolinska Institutet; Department of Medical Epidemiology and Biostatistics
3.The University of Hong Kong; Department of Psychology
4.The University of Hong Kong; State Key Laboratory of Brain and Cognitive Sciences
5.King's Health Partners, Department of Psychosis Studies Institute of Psychiatry; King's College London
6.King’s College; Institute of Psychiatry
7.Kings College London; St Andrew’s Academic Centre
8.Kings College London; St Andrew’s Academic Centre
推荐引用方式
GB/T 7714
Suo,Chen,Toulopoulou,Timothea,Bramon,Elvira,et al. Analysis of multiple phenotypes in genome-wide genetic mapping studies[J]. BMC Bioinformatics,2013,14(1).
APA Suo,Chen.,Toulopoulou,Timothea.,Bramon,Elvira.,Walshe,Muriel.,Picchioni,Marco.,...&Ott,Jurg.(2013).Analysis of multiple phenotypes in genome-wide genetic mapping studies.BMC Bioinformatics,14(1).
MLA Suo,Chen,et al."Analysis of multiple phenotypes in genome-wide genetic mapping studies".BMC Bioinformatics 14.1(2013).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Suo,Chen]的文章
[Toulopoulou,Timothea]的文章
[Bramon,Elvira]的文章
百度学术
百度学术中相似的文章
[Suo,Chen]的文章
[Toulopoulou,Timothea]的文章
[Bramon,Elvira]的文章
必应学术
必应学术中相似的文章
[Suo,Chen]的文章
[Toulopoulou,Timothea]的文章
[Bramon,Elvira]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。