PSYCH OpenIR
Emotion Distribution Learning Based on Peripheral Physiological Signals
Shu, Yezhi1; Yang, Pei1; Liu, Niqi1; Zhang, Shu1; Zhao, Guozhen2,3; Liu, Yong-Jin1
第一作者Shu, Yezhi ; Yang, Pei ; Liu, Niqi
通讯作者Liu, Yong-Jin(liuyongjin@tsinghua.edu.cn)
通讯作者邮箱liuyongjin@tsinghua.edu.cn
心理所单位排序2
摘要

Emotion analysis based on peripheral physiological signals has attracted increasing attention recently in affective computing. Previous works usually predict emotional states using a single emotion label for each discrete time. However, in real-world scenarios, it is not sufficient due to the fact that the real-world emotional state is usually a mixture of basic emotions. In this paper, we formulate the emotion analysis as an emotion distribution learning (EDL) problem and make two contributions. First, we establish a standardised dataset containing four negative emotions (anger, disgust, sadness, fear) and three positive emotions (tenderness, joy, amusement), which could be a useful benchmark for the EDL task. Second, we propose an emotion distribution prediction system which has the following distinct characteristics: (1) after processing raw peripheral physiological signals, we compute totally 89 representative features from four channels, i.e., GSR, SKT, ECG and HR, (2) an adaptive feature selection strategy based on recursive feature elimination (RFE) is used to select the most significant features in our EDL task, and (3) we design a dedicated EDL model based on convolution neural networks that takes information from both the feature correlation and the time domain into consideration. Experiments were conducted to validate our proposed system.

关键词Physiology Brain modeling Emotion recognition Electroencephalography Motion pictures Biological system modeling Task analysis distribution learning peripheral physiological signals feature selection
2022
语种英语
DOI2022.3163609
发表期刊IEEE Transactions on Affective Computing
ISSN1949-3045
卷号14期号:3页码:2470-2483
期刊论文类型实证研究
收录类别SCI
资助项目Natural Science Foundation of China[U1736220] ; Tsinghua University Initiative Scientific Research Program ; [61725204]
出版者IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
WOS关键词NERVOUS-SYSTEM ACTIVITY ; CLASSIFICATION ; RECOGNITION ; MUSIC ; RESPONSES ; EEG ; SELECTION ; WORDS ; MODEL
WOS研究方向Computer Science
WOS类目Computer Science, Artificial Intelligence ; Computer Science, Cybernetics
WOS记录号WOS:001075041900057
WOS分区Q1
Q分类Q1
资助机构Natural Science Foundation of China ; Tsinghua University Initiative Scientific Research Program
引用统计
被引频次:7[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符https://ir.psych.ac.cn/handle/311026/42332
专题中国科学院心理研究所
通讯作者Liu, Yong-Jin
作者单位1.BNRist, the Department of Computer Science and Technology, Tsinghua University, and MOE-Key Laboratory of Pervasive Computing, Beijing, China
2.Institute of Psychology, Chinese Academy of Sciences, Beijing, China
3.Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
推荐引用方式
GB/T 7714
Shu, Yezhi,Yang, Pei,Liu, Niqi,et al. Emotion Distribution Learning Based on Peripheral Physiological Signals[J]. IEEE Transactions on Affective Computing,2022,14(3):2470-2483.
APA Shu, Yezhi,Yang, Pei,Liu, Niqi,Zhang, Shu,Zhao, Guozhen,&Liu, Yong-Jin.(2022).Emotion Distribution Learning Based on Peripheral Physiological Signals.IEEE Transactions on Affective Computing,14(3),2470-2483.
MLA Shu, Yezhi,et al."Emotion Distribution Learning Based on Peripheral Physiological Signals".IEEE Transactions on Affective Computing 14.3(2022):2470-2483.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
Emotion_Distribution(1880KB)期刊论文作者接受稿开放获取CC BY-NC-SA浏览 下载
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Shu, Yezhi]的文章
[Yang, Pei]的文章
[Liu, Niqi]的文章
百度学术
百度学术中相似的文章
[Shu, Yezhi]的文章
[Yang, Pei]的文章
[Liu, Niqi]的文章
必应学术
必应学术中相似的文章
[Shu, Yezhi]的文章
[Yang, Pei]的文章
[Liu, Niqi]的文章
相关权益政策
暂无数据
收藏/分享
文件名: Emotion_Distribution_Learning_Based_on_Peripheral_Physiological_Signals.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。