PSYCH OpenIR  > 中国科学院行为科学重点实验室
3D-CNN for Facial Micro- and Macro-expression Spotting on Long Video Sequences using Temporal Oriented Reference Frame
Yap, Chuin Hong1; Yap, Moi Hoon1; Davison, Adrian2; Kendrick, Connah1; Li, Jingting3; Wang, Su-Jing3; Li, JingtinCunningham, Ryan1
2022
会议名称MM 2022 - Proceedings of the 30th ACM International Conference on Multimedia
会议录名称MM 2022 - Proceedings of the 30th ACM International Conference on Multimedia
页码7016-7020
会议日期不详
会议地点不详
摘要

Facial expression spotting is the preliminary step for micro- and macro-expression analysis. The task of reliably spotting such expressions in video sequences is currently unsolved. Current best systems depend upon optical flow methods to extract regional motion features, before categorisation of that motion into a specific class of facial movement. Optical flow is susceptible to drift error, which introduces a serious problem for motions with long-term dependencies, such as high frame-rate macro-expression. We propose a purely deep learning solution which, rather than tracking frame differential motion, compares via a convolutional model, each frame with two temporally local reference frames. Reference frames are sampled according to calculated micro- and macro-expression duration. As baseline for MEGC2021 using leave-one-subject-out evaluation method, we show that our solution performed better in a high frame-rate (200 fps) SAMM long videos dataset (SAMM-LV) than a low frame-rate (30 fps) (CAS(ME)2) dataset. We introduce a new unseen dataset for MEGC2022 challenge (MEGC2022-testSet) and achieves F1-Score of 0.1531 as baseline result.

收录类别EI
文献类型会议论文
条目标识符https://ir.psych.ac.cn/handle/311026/44785
专题中国科学院行为科学重点实验室
通讯作者Davison, Adrian
作者单位1.Centre for Advanced Computational Science, Manchester Metropolitan University, Manchester, United Kingdom
2.University of Manchester, Manchester, United Kingdom
3.CAS Key Laboratory of Behavioral Science, Institute of Psychology, Beijing, China
推荐引用方式
GB/T 7714
Yap, Chuin Hong,Yap, Moi Hoon,Davison, Adrian,et al. 3D-CNN for Facial Micro- and Macro-expression Spotting on Long Video Sequences using Temporal Oriented Reference Frame[C],2022:7016-7020.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Yap, Chuin Hong]的文章
[Yap, Moi Hoon]的文章
[Davison, Adrian]的文章
百度学术
百度学术中相似的文章
[Yap, Chuin Hong]的文章
[Yap, Moi Hoon]的文章
[Davison, Adrian]的文章
必应学术
必应学术中相似的文章
[Yap, Chuin Hong]的文章
[Yap, Moi Hoon]的文章
[Davison, Adrian]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。