Institutional Repository of Key Laboratory of Behavioral Science, CAS
3D-CNN for Facial Micro- and Macro-expression Spotting on Long Video Sequences using Temporal Oriented Reference Frame | |
Yap, Chuin Hong1; Yap, Moi Hoon1; Davison, Adrian2; Kendrick, Connah1; Li, Jingting3![]() ![]() | |
2022 | |
会议名称 | MM 2022 - Proceedings of the 30th ACM International Conference on Multimedia |
会议录名称 | MM 2022 - Proceedings of the 30th ACM International Conference on Multimedia |
页码 | 7016-7020 |
会议日期 | 不详 |
会议地点 | 不详 |
摘要 | Facial expression spotting is the preliminary step for micro- and macro-expression analysis. The task of reliably spotting such expressions in video sequences is currently unsolved. Current best systems depend upon optical flow methods to extract regional motion features, before categorisation of that motion into a specific class of facial movement. Optical flow is susceptible to drift error, which introduces a serious problem for motions with long-term dependencies, such as high frame-rate macro-expression. We propose a purely deep learning solution which, rather than tracking frame differential motion, compares via a convolutional model, each frame with two temporally local reference frames. Reference frames are sampled according to calculated micro- and macro-expression duration. As baseline for MEGC2021 using leave-one-subject-out evaluation method, we show that our solution performed better in a high frame-rate (200 fps) SAMM long videos dataset (SAMM-LV) than a low frame-rate (30 fps) (CAS(ME)2) dataset. We introduce a new unseen dataset for MEGC2022 challenge (MEGC2022-testSet) and achieves F1-Score of 0.1531 as baseline result. |
收录类别 | EI |
文献类型 | 会议论文 |
条目标识符 | https://ir.psych.ac.cn/handle/311026/44785 |
专题 | 中国科学院行为科学重点实验室 |
通讯作者 | Davison, Adrian |
作者单位 | 1.Centre for Advanced Computational Science, Manchester Metropolitan University, Manchester, United Kingdom 2.University of Manchester, Manchester, United Kingdom 3.CAS Key Laboratory of Behavioral Science, Institute of Psychology, Beijing, China |
推荐引用方式 GB/T 7714 | Yap, Chuin Hong,Yap, Moi Hoon,Davison, Adrian,et al. 3D-CNN for Facial Micro- and Macro-expression Spotting on Long Video Sequences using Temporal Oriented Reference Frame[C],2022:7016-7020. |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论