Institutional Repository, Institute of Psychology, Chinese Academy of Sciences
发展人口神经科学中的规范化建模:量化脑智发展规律与个体分化特征的“显微镜” | |
其他题名 | Normative modeling for developmental population neuroscience: A "microscope" through which the laws and characteristics of individual differentiation can be quantified in human brain-mind development |
张青1,2; 王银山3; 陈丽珍3; 张家鑫1,2; 周子轩3; 左西年1,2,3,4![]() | |
通讯作者邮箱 | xinian.zuo@bnu.edu.cn ; zuoxn@psych.ac.cn |
心理所单位排序 | 1 |
摘要 | 摘要揭示脑与心智个体差异的来源、规律及其科学机制是发展人口神经科学领域颇具吸引力的研究方向.个体差异的复杂性与当前研究方法的局限性是该领域方向的挑战所在,亚须发展在群体和个体层面建模个体差异的方法学框架,来量化脑智群体规律及其个体分化特征,实现一般科学规律与个体应用转化的科学衔接.规范化建模为此提供了一种方法学选择:基于代表性样本,使用分布式回归等方法,建立群体规律的统计模型,并在此基础上推演个体偏离规范化群体参照的程度,从而量化个体分化指标.这一方法学框架为发展人口神经科学提供了新工具,从人口生命周期的视角揭示了个体脑智差异的一般规律及其生物学基础,为解析脑智疾患的病因学机制及精准化临床实践提供了参考.鉴于规范化建模方法的巨大潜力,未来亚须在采样策略优化、数据收集规范以及建模方法改进等方面开展深入研究,从而加速其应用转化. |
其他摘要 | Human neuroscience is at a crossroads where both replicability and generalizability of neurocognitive research remain highly challenging due to potentially unprecedented complexity of brain-behavior associations and thus hamper their translations into healthcare practices. An important aspect of such complexity is individual differences while population neuroscience provides a promising framework for addressing this complexity with an interdisciplinary paradigm by integrating neuroscience, genetics and epidemiology. A fairly attractive research direction in developmental population neuroscience is to uncover the patterns, origins and neural mechanisms of these individual differences in the human brain and mind. The complexity of understanding these individual differences in this new direction presents great challenges for current research methods. To fill this methodological gap, we argue that there is an urgent need to develop a methodological framework for modelling individual differences at both the population and individual levels with quantitative general laws and the characteristics of individual differentiation. Normative modelling provides an effective methodological choice for this purpose to bridge general laws and individual translations. This method can be used to generate statistical models at the population level by leveraging distributional regression approaches on representative samples and derives deviations at individual level from the population reference models as individual differentiation quantities. This methodological framework can provide a novel tool for developmental population neuroscience research through which common patterns and the biological underpinnings of individual differences in the brain and mind can be elucidated from a lifespan perspective. This framework offers reference resources that can be used to not only reveal possible etiological mechanisms of various brain-mind disorders but also implement their precise clinical practices such as the pediatric growth charts for references and standards. According to the vast potential of normative modelling methods, in this review, we encourage the immediate action of optimizing sampling strategies, standardizing data collection, and improving statistical modelling for deep investigations to accelerate their translational applications. In recent years, China has accumulated rich resources of in-vivo neuroimaging data, paralleling to the international brain imaging data sharing and open brain science research. Looking beyond, various large-scale brain-mind cohorts will be continuously initiated to cover different regions and different stages of lifespan through the program of scientific and technological innovation 2030-The major project of the Brain Science and Brain-Inspired Intelligence Technology. This will offer China the world's largest living brain-mind resources for promoting the research, application and transformation of normative modeling methods in the development of population neuroscience. Such advances will lead to construct normative brain-mind association models for the lifespan development of Chinese population, assist the early diagnosis and precise treatment as well as reform the clinical practice. It is expected to ultimately provide scientific support for parsing the etiology of the brain-mind diseases, and optimizing the national brain health and its related policy designation. |
关键词 | 规范化建模 生长发育图表 群体规律 个体差异 磁共振成像 |
2023 | |
语种 | 中文 |
DOI | 10.1360/TB-2022-1170 |
发表期刊 | 科学通报
![]() |
ISSN | 0023-074X |
卷号 | 68期号:16页码:2086-2100 |
期刊论文类型 | 综述 |
收录类别 | EI ; CSCD |
CSCD记录号 | CSCD:7491126 |
附注 | 广东省重点领域研发计划(2019B030335001}、中国博士后科学基金(2022M 710432、国家基础科学数据中心“中国活体人脑成像共享数据库”(NBSDC-DB-15)和中国科学技术协会学科发展项目(2018XKFZ03)资助
|
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | https://ir.psych.ac.cn/handle/311026/45052 |
专题 | 中国科学院心理研究所 |
作者单位 | 1.Institute of Psychology, Chinese Academy of Sciences, Beijing; 100101, China 2.Department of Psychology, University of Chinese Academy of Sciences, Beijing; 100049, China 3.State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing; 100875, China 4.National Basic Science Data Center, Beijing; 100190, China |
第一作者单位 | 中国科学院心理研究所 |
推荐引用方式 GB/T 7714 | 张青,王银山,陈丽珍,等. 发展人口神经科学中的规范化建模:量化脑智发展规律与个体分化特征的“显微镜”[J]. 科学通报,2023,68(16):2086-2100. |
APA | 张青,王银山,陈丽珍,张家鑫,周子轩,&左西年.(2023).发展人口神经科学中的规范化建模:量化脑智发展规律与个体分化特征的“显微镜”.科学通报,68(16),2086-2100. |
MLA | 张青,et al."发展人口神经科学中的规范化建模:量化脑智发展规律与个体分化特征的“显微镜”".科学通报 68.16(2023):2086-2100. |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | ||
Normative modeling f(2488KB) | 期刊论文 | 出版稿 | 开放获取 | CC BY-NC-SA | 浏览 下载 |
个性服务 |
推荐该条目 |
保存到收藏夹 |
查看访问统计 |
导出为Endnote文件 |
谷歌学术 |
谷歌学术中相似的文章 |
[张青]的文章 |
[王银山]的文章 |
[陈丽珍]的文章 |
百度学术 |
百度学术中相似的文章 |
[张青]的文章 |
[王银山]的文章 |
[陈丽珍]的文章 |
必应学术 |
必应学术中相似的文章 |
[张青]的文章 |
[王银山]的文章 |
[陈丽珍]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论