PSYCH OpenIR  > 社会与工程心理学研究室
Exploring the ability of vocal biomarkers in distinguishing depression from bipolar disorder, schizophrenia, and healthy controls
Wei Pan1,2,3; Fusong Deng4; Xianbin Wang1,2,3; Bowen Hang1,2,3; Wenwei Zhou1,2,3; Tingshao Zhu5,6
第一作者Wei Pan
通讯作者Zhu, Tingshao(tszhu@psych.ac.cn)
通讯作者邮箱tszhu@psych.ac.cn
摘要

Background: Vocal features have been exploited to distinguish depression from healthy controls. While there have been some claims for success, the degree to which changes in vocal features are specific to depression has not been systematically studied. Hence, we examined the performances of vocal features in differentiating depression from bipolar disorder (BD), schizophrenia and healthy controls, as well as pairwise classifications for the three disorders.
Methods: We sampled 32 bipolar disorder patients, 106 depression patients, 114 healthy controls, and 20 schizophrenia patients. We extracted i-vectors from Mel-frequency cepstrum coefficients (MFCCs), and built logistic regression models with ridge regularization and 5-fold cross-validation on the training set, then applied models to the test set. There were seven classification tasks: any disorder versus healthy controls; depression versus healthy controls; BD versus healthy controls; schizophrenia versus healthy controls; depression versus BD;
depression versus schizophrenia; BD versus schizophrenia.
Results: The area under curve (AUC) score for classifying depression and bipolar disorder was 0.5 (F-score = 0.44). For other comparisons, the AUC scores ranged from 0.75 to 0.92, and the F-scores ranged from 0.73 to 0.91. The model performance (AUC) of classifying depression and bipolar disorder was significantly worse than that of classifying bipolar disorder and schizophrenia (corrected p < 0.05). While there were no significant differences in the remaining pairwise comparisons of the 7 classification tasks.
Conclusion: Vocal features showed discriminatory potential in classifying
depression and the healthy controls, as well as between depression and other mental disorders. Future research should systematically examine the mechanisms of voice features in distinguishing depression with other mental disorders and develop more sophisticated machine learning models so that voice can assist clinical diagnosis better.

关键词depression, healthy controls, schizophrenia, bipolar disorder, i-vectors, logistic regression MFCCs
2023
语种英语
DOI10.3389/fpsyt.2023.1079448
发表期刊Front. Psychiatry
ISSN1664-0640
卷号14页码:9
收录类别SCI
资助项目Fundamental Research Funds for the Central Universities[CCNU21XJ021] ; Knowledge Innovation Program of Wuhan-Shuguang Project[2022020801020288] ; Research Program Funds of the Collaborative Innovation Center of Assessment toward Basic Education Quality[2022-04-030-BZPK01]
出版者FRONTIERS MEDIA SA
WOS关键词SPEECH EMOTION RECOGNITION ; NEGATIVE SYMPTOMS ; MATCHING METHODS ; FEATURES ; PERFORMANCE ; EXPRESSION ; DISEASES ; PROSODY ; MODELS
WOS研究方向Psychiatry
WOS类目Psychiatry
WOS记录号WOS:001045252100001
资助机构Fundamental Research Funds for the Central Universities ; Knowledge Innovation Program of Wuhan-Shuguang Project ; Research Program Funds of the Collaborative Innovation Center of Assessment toward Basic Education Quality
引用统计
被引频次:3[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符https://ir.psych.ac.cn/handle/311026/45111
专题社会与工程心理学研究室
通讯作者Tingshao Zhu
作者单位1.Key Laboratory of Adolescent Cyberpsychology and Behavior (CCNU), Ministry of Education, Wuhan, China
2.School of Psychology, Central China Normal University, Wuhan, China
3.Key Laboratory of Human Development and Mental Health of Hubei Province, Wuhan, China
4.Wuhan Wuchang Hospital, Wuchang Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China
5.Institute of Psychology, Chinese Academy of Sciences, Beijing, China
6.CAS Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
通讯作者单位中国科学院心理研究所;  中国科学院行为科学重点实验室
推荐引用方式
GB/T 7714
Wei Pan,Fusong Deng,Xianbin Wang,et al. Exploring the ability of vocal biomarkers in distinguishing depression from bipolar disorder, schizophrenia, and healthy controls[J]. Front. Psychiatry,2023,14:9.
APA Wei Pan,Fusong Deng,Xianbin Wang,Bowen Hang,Wenwei Zhou,&Tingshao Zhu.(2023).Exploring the ability of vocal biomarkers in distinguishing depression from bipolar disorder, schizophrenia, and healthy controls.Front. Psychiatry,14,9.
MLA Wei Pan,et al."Exploring the ability of vocal biomarkers in distinguishing depression from bipolar disorder, schizophrenia, and healthy controls".Front. Psychiatry 14(2023):9.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
Exploring_the_abilit(469KB)期刊论文作者接受稿开放获取CC BY-NC-SA浏览 下载
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Wei Pan]的文章
[Fusong Deng]的文章
[Xianbin Wang]的文章
百度学术
百度学术中相似的文章
[Wei Pan]的文章
[Fusong Deng]的文章
[Xianbin Wang]的文章
必应学术
必应学术中相似的文章
[Wei Pan]的文章
[Fusong Deng]的文章
[Xianbin Wang]的文章
相关权益政策
暂无数据
收藏/分享
文件名: Exploring_the_ability_of_vocal_biomarkers_in_disti.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。