PSYCH OpenIR  > 社会与工程心理学研究室
Using gait videos to automatically assess anxiety
Yeye Wen1,2; Baobin Li3; Xiaoqian Liu2; Deyuan Chen1; Shaoshuai Gao1; Tingshao Zhu2,4
第一作者Yeye Wen
通讯作者邮箱tszhu@psych.ac.cn ; ssgao@ucas.ac.cn
心理所单位排序2
摘要

Background: In recent years, the number of people with anxiety disorders has increased worldwide. Methods for identifying anxiety through objective clues are not yet mature, and the reliability and validity of existing modeling methods have not been tested. The objective of this paper is to propose an automatic anxiety assessment model with good reliability and validity.
Methods: This study collected 2D gait videos and Generalized Anxiety Disorder (GAD-7) scale data from 150 participants. We extracted static and dynamic time-domain features and frequency-domain features from the gait videos and used various machine learning approaches to build anxiety assessment models. We evaluated the reliability and validity of the models by comparing the influence of factors such as the frequency-domain feature construction method, training data size, time-frequency features, gender, and odd and even frame data on themodel.
Results: The results show that the number of wavelet decomposition layers has a significant impact on the frequency-domain feature modeling, while the size of the gait training data has little impact on the modeling e􀀀ect. In this study, the time-frequency features contributed to the modeling, with the dynamic features contributingmore than the static features.Ourmodel predicts anxiety significantly better in women than inmen (rMale = 0.666, rFemale = 0.763, p < 0.001). The best correlation coecient between the model prediction scores and scale scores for
all participants is 0.725 (p < 0.001). The correlation coecient between themodel prediction scores for odd and even frame data is 0.801∼0.883 (p < 0.001). 

Conclusion: This study shows that anxiety assessment based on 2D gait
video modeling is reliable and e􀀀ective. Moreover, we provide a basis for the development of a real-time, convenient and non-invasive automatic anxiety assessment method.

关键词anxiety assessment mental health gait video machine learning reliability and validity
2023
语种英语
DOI10.3389/fpubh.2023.1082139
发表期刊Front. Public Health
ISSN2296-2565
期刊论文类型综述
收录类别SCI ; SSCI
WOS分区Q1
引用统计
被引频次:1[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符https://ir.psych.ac.cn/handle/311026/45113
专题社会与工程心理学研究室
通讯作者Shaoshuai Gao; Tingshao Zhu
作者单位1.School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, China
2.Institute of Psychology, Chinese Academy of Sciences, Beijing, China
3.School of Computer Science and Technology, University of Chinese Academy of Sciences, Beijing, China
4.Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
第一作者单位中国科学院心理研究所
通讯作者单位中国科学院心理研究所
推荐引用方式
GB/T 7714
Yeye Wen,Baobin Li,Xiaoqian Liu,et al. Using gait videos to automatically assess anxiety[J]. Front. Public Health,2023.
APA Yeye Wen,Baobin Li,Xiaoqian Liu,Deyuan Chen,Shaoshuai Gao,&Tingshao Zhu.(2023).Using gait videos to automatically assess anxiety.Front. Public Health.
MLA Yeye Wen,et al."Using gait videos to automatically assess anxiety".Front. Public Health (2023).
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
Using gait videos to(1611KB)期刊论文出版稿开放获取CC BY-NC-SA浏览 下载
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Yeye Wen]的文章
[Baobin Li]的文章
[Xiaoqian Liu]的文章
百度学术
百度学术中相似的文章
[Yeye Wen]的文章
[Baobin Li]的文章
[Xiaoqian Liu]的文章
必应学术
必应学术中相似的文章
[Yeye Wen]的文章
[Baobin Li]的文章
[Xiaoqian Liu]的文章
相关权益政策
暂无数据
收藏/分享
文件名: Using gait videos to automatically assess anxiety.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。