PSYCH OpenIR  > 中国科学院行为科学重点实验室
Comprehensive evaluation of harmonization on functional brain imaging for multisite data-fusion.
Wang, Yu-Wei1,2,3; Chen, Xiao1,2,3,4; Yan, Chao-Gan1,2,3,4
第一作者Wang, Yu-Wei
通讯作者邮箱yancg@psych.ac.cn (yan, chao-gan)
摘要

To embrace big-data neuroimaging, harmonizing the site effect in resting-state functional magnetic resonance imaging (R-fMRI) data fusion is a fundamental challenge. A comprehensive evaluation of potentially effective harmonization strategies, particularly with specifically collected data, has been scarce, especially for R-fMRI metrics. Here, we comprehensively assess harmonization strategies from multiple perspectives, including tests on residual site effect, individual identification, test-retest reliability, and replicability of group-level statistical results, on widely used R-fMRI metrics across various datasets, including data obtained from participants with repetitive measures at different scanners. For individual identifiability (i.e., whether the same subject could be identified across R-fMRI data scanned across different sites), we found that, while most methods decreased site effects, the Subsampling Maximum-mean-distance based distribution shift correction Algorithm (SMA) and parametric unadjusted CovBat outperformed linear regression models, linear mixed models, ComBat series and invariant conditional variational auto-encoder in clustering accuracy. Test-retest reliability was better for SMA and parametric adjusted CovBat than unadjusted ComBat series and parametric unadjusted CovBat in the number of overlapped voxels. At the same time, SMA was superior to the latter in replicability in terms of the Dice coefficient and the scale of brain areas showing sex differences reproducibly observed across datasets. Furthermore, SMA better detected reproducible sex differences of ALFF under the site-sex confounded situation. Moreover, we designed experiments to identify the best target site features to optimize SMA identifiability, test-retest reliability, and stability. We noted both sample size and distribution of the target site matter and introduced a heuristic formula for selecting the target site. In addition to providing practical guidelines, this work can inform continuing improvements and innovations in harmonizing methodologies for big R-fMRI data.

关键词Comparison Harmonization Multi-site pooling Resting-state fMRI
2023
DOI10.1016/j.neuroimage.2023.120089
发表期刊NeuroImage
ISSN1095-9572
卷号274页码:120089
项目简介

SCI

引用统计
被引频次:19[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符https://ir.psych.ac.cn/handle/311026/45286
专题中国科学院行为科学重点实验室
作者单位1.CAS Key Laboratory of Behavioral Science, Institute of Psychology, Beijing 100101, China
2.2.Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China
3.3International Big-Data Center for Depression Research, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China
4.4.Magnetic Resonance Imaging Research Center, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China.
第一作者单位中国科学院行为科学重点实验室;  中国科学院心理研究所
推荐引用方式
GB/T 7714
Wang, Yu-Wei,Chen, Xiao,Yan, Chao-Gan. Comprehensive evaluation of harmonization on functional brain imaging for multisite data-fusion.[J]. NeuroImage,2023,274:120089.
APA Wang, Yu-Wei,Chen, Xiao,&Yan, Chao-Gan.(2023).Comprehensive evaluation of harmonization on functional brain imaging for multisite data-fusion..NeuroImage,274,120089.
MLA Wang, Yu-Wei,et al."Comprehensive evaluation of harmonization on functional brain imaging for multisite data-fusion.".NeuroImage 274(2023):120089.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
Comprehensive evalua(6240KB)期刊论文出版稿开放获取CC BY-NC-SA浏览 下载
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Wang, Yu-Wei]的文章
[Chen, Xiao]的文章
[Yan, Chao-Gan]的文章
百度学术
百度学术中相似的文章
[Wang, Yu-Wei]的文章
[Chen, Xiao]的文章
[Yan, Chao-Gan]的文章
必应学术
必应学术中相似的文章
[Wang, Yu-Wei]的文章
[Chen, Xiao]的文章
[Yan, Chao-Gan]的文章
相关权益政策
暂无数据
收藏/分享
文件名: Comprehensive evaluation of harmonization on functional brain imaging.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。