Institutional Repository of Key Laboratory of Behavioral Science, CAS
Comprehensive evaluation of harmonization on functional brain imaging for multisite data-fusion | |
Wang, Yu-Wei1,2,3; Chen, Xiao1,2,3; Yan, Chao-Gan1,2,3,4 | |
第一作者 | Wang, Yu-Wei |
通讯作者邮箱 | yancg@psych.ac.cn (c.-g. yan) |
心理所单位排序 | 1 |
摘要 | To embrace big-data neuroimaging, harmonizing the site effect in resting-state functional magnetic resonance imaging (R-fMRI) data fusion is a fundamental challenge. A comprehensive evaluation of potentially effective harmonization strategies, particularly with specifically collected data, has been scarce, especially for R-fMRI metrics. Here, we comprehensively assess harmonization strategies from multiple perspectives, including tests on residual site effect, individual identification, test-retest reliability, and replicability of group-level statisti-cal results, on widely used R-fMRI metrics across various datasets, including data obtained from participants with repetitive measures at different scanners. For individual identifiability (i.e., whether the same subject could be identified across R-fMRI data scanned across different sites), we found that, while most methods decreased site effects, the Subsampling Maximum-mean-distance based distribution shift correction Algorithm (SMA) and parametric unadjusted CovBat outperformed linear regression models, linear mixed models, ComBat series and invariant conditional variational auto-encoder in clustering accuracy. Test-retest reliability was better for SMA and parametric adjusted CovBat than unadjusted ComBat series and parametric unadjusted CovBat in the number of overlapped voxels. At the same time, SMA was superior to the latter in replicability in terms of the Dice coef-ficient and the scale of brain areas showing sex differences reproducibly observed across datasets. Furthermore, SMA better detected reproducible sex differences of ALFF under the site-sex confounded situation. Moreover, we designed experiments to identify the best target site features to optimize SMA identifiability, test-retest reliabil-ity, and stability. We noted both sample size and distribution of the target site matter and introduced a heuristic formula for selecting the target site. In addition to providing practical guidelines, this work can inform continuing improvements and innovations in harmonizing methodologies for big R-fMRI data. |
关键词 | Comparison Harmonization Multi-site pooling Resting-state fMRI |
2023-07-01 | |
语种 | 英语 |
DOI | 10.1016/j.neuroimage.2023.120089 |
发表期刊 | NEUROIMAGE |
ISSN | 1053-8119 |
卷号 | 274页码:22 |
期刊论文类型 | 数据论文 |
收录类别 | SCI |
资助项目 | Sci-Tech Innovation 2030-Major Project of Brain Science and Brain-inspired Intelligence Technology[2021ZD0200600] ; National Key R&D Program of China[2017YFC1309902] ; National Natural Science Foundation of China[82122035] ; National Natural Science Foundation of China[81671774] ; National Natural Science Foundation of China[81630031] ; 13th Five-year Informatization Plan of Chinese Academy of Sciences[XXH13505] ; Key Research Program of the Chinese Academy of Sciences[ZDBS-SSW-JSC006] ; Beijing Nova Program of Science and Technology[Z191100001119104] ; Scientific Foundation of Institute of Psychology, Chinese Academy of Sciences[E2CX4425YZ] |
出版者 | ACADEMIC PRESS INC ELSEVIER SCIENCE |
WOS关键词 | RESTING-STATE FMRI ; CONNECTIVITY ; CONNECTOMICS ; REGISTRATION ; PREDICTION ; MOTION ; ROBUST ; POWER |
WOS研究方向 | Neurosciences & Neurology ; Radiology, Nuclear Medicine & Medical Imaging |
WOS类目 | Neurosciences ; Neuroimaging ; Radiology, Nuclear Medicine & Medical Imaging |
WOS记录号 | WOS:000991075400001 |
WOS分区 | Q1 |
资助机构 | Sci-Tech Innovation 2030-Major Project of Brain Science and Brain-inspired Intelligence Technology ; National Key R&D Program of China ; National Natural Science Foundation of China ; 13th Five-year Informatization Plan of Chinese Academy of Sciences ; Key Research Program of the Chinese Academy of Sciences ; Beijing Nova Program of Science and Technology ; Scientific Foundation of Institute of Psychology, Chinese Academy of Sciences |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | http://ir.psych.ac.cn/handle/311026/45429 |
专题 | 中国科学院行为科学重点实验室 |
通讯作者 | Yan, Chao-Gan |
作者单位 | 1.Inst Psychol, CAS Key Lab Behav Sci, 16 Lincui Rd, Beijing 100101, Peoples R China 2.Univ Chinese Acad Sci, Dept Psychol, Beijing 100049, Peoples R China 3.Chinese Acad Sci, Inst Psychol, Int Big Data Ctr Depress Res, Beijing 100101, Peoples R China 4.Chinese Acad Sci, Inst Psychol, Magnet Resonance Imaging Res Ctr, Beijing 100101, Peoples R China |
第一作者单位 | 中国科学院行为科学重点实验室 |
通讯作者单位 | 中国科学院行为科学重点实验室; 管理支撑系统 |
推荐引用方式 GB/T 7714 | Wang, Yu-Wei,Chen, Xiao,Yan, Chao-Gan. Comprehensive evaluation of harmonization on functional brain imaging for multisite data-fusion[J]. NEUROIMAGE,2023,274:22. |
APA | Wang, Yu-Wei,Chen, Xiao,&Yan, Chao-Gan.(2023).Comprehensive evaluation of harmonization on functional brain imaging for multisite data-fusion.NEUROIMAGE,274,22. |
MLA | Wang, Yu-Wei,et al."Comprehensive evaluation of harmonization on functional brain imaging for multisite data-fusion".NEUROIMAGE 274(2023):22. |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | ||
Comprehensive evalua(6240KB) | 期刊论文 | 出版稿 | 限制开放 | CC BY-NC-SA | 请求全文 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论