PSYCH OpenIR  > 中国科学院行为科学重点实验室
Comprehensive evaluation of harmonization on functional brain imaging for multisite data-fusion
Wang, Yu-Wei1,2,3; Chen, Xiao1,2,3; Yan, Chao-Gan1,2,3,4
第一作者Wang, Yu-Wei
通讯作者邮箱yancg@psych.ac.cn (c.-g. yan)
心理所单位排序1
摘要

To embrace big-data neuroimaging, harmonizing the site effect in resting-state functional magnetic resonance imaging (R-fMRI) data fusion is a fundamental challenge. A comprehensive evaluation of potentially effective harmonization strategies, particularly with specifically collected data, has been scarce, especially for R-fMRI metrics. Here, we comprehensively assess harmonization strategies from multiple perspectives, including tests on residual site effect, individual identification, test-retest reliability, and replicability of group-level statisti-cal results, on widely used R-fMRI metrics across various datasets, including data obtained from participants with repetitive measures at different scanners. For individual identifiability (i.e., whether the same subject could be identified across R-fMRI data scanned across different sites), we found that, while most methods decreased site effects, the Subsampling Maximum-mean-distance based distribution shift correction Algorithm (SMA) and parametric unadjusted CovBat outperformed linear regression models, linear mixed models, ComBat series and invariant conditional variational auto-encoder in clustering accuracy. Test-retest reliability was better for SMA and parametric adjusted CovBat than unadjusted ComBat series and parametric unadjusted CovBat in the number of overlapped voxels. At the same time, SMA was superior to the latter in replicability in terms of the Dice coef-ficient and the scale of brain areas showing sex differences reproducibly observed across datasets. Furthermore, SMA better detected reproducible sex differences of ALFF under the site-sex confounded situation. Moreover, we designed experiments to identify the best target site features to optimize SMA identifiability, test-retest reliabil-ity, and stability. We noted both sample size and distribution of the target site matter and introduced a heuristic formula for selecting the target site. In addition to providing practical guidelines, this work can inform continuing improvements and innovations in harmonizing methodologies for big R-fMRI data.

关键词Comparison Harmonization Multi-site pooling Resting-state fMRI
2023-07-01
语种英语
DOI10.1016/j.neuroimage.2023.120089
发表期刊NEUROIMAGE
ISSN1053-8119
卷号274页码:22
期刊论文类型数据论文
收录类别SCI
资助项目Sci-Tech Innovation 2030-Major Project of Brain Science and Brain-inspired Intelligence Technology[2021ZD0200600] ; National Key R&D Program of China[2017YFC1309902] ; National Natural Science Foundation of China[82122035] ; National Natural Science Foundation of China[81671774] ; National Natural Science Foundation of China[81630031] ; 13th Five-year Informatization Plan of Chinese Academy of Sciences[XXH13505] ; Key Research Program of the Chinese Academy of Sciences[ZDBS-SSW-JSC006] ; Beijing Nova Program of Science and Technology[Z191100001119104] ; Scientific Foundation of Institute of Psychology, Chinese Academy of Sciences[E2CX4425YZ]
出版者ACADEMIC PRESS INC ELSEVIER SCIENCE
WOS关键词RESTING-STATE FMRI ; CONNECTIVITY ; CONNECTOMICS ; REGISTRATION ; PREDICTION ; MOTION ; ROBUST ; POWER
WOS研究方向Neurosciences & Neurology ; Radiology, Nuclear Medicine & Medical Imaging
WOS类目Neurosciences ; Neuroimaging ; Radiology, Nuclear Medicine & Medical Imaging
WOS记录号WOS:000991075400001
WOS分区Q1
资助机构Sci-Tech Innovation 2030-Major Project of Brain Science and Brain-inspired Intelligence Technology ; National Key R&D Program of China ; National Natural Science Foundation of China ; 13th Five-year Informatization Plan of Chinese Academy of Sciences ; Key Research Program of the Chinese Academy of Sciences ; Beijing Nova Program of Science and Technology ; Scientific Foundation of Institute of Psychology, Chinese Academy of Sciences
引用统计
被引频次:11[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://ir.psych.ac.cn/handle/311026/45429
专题中国科学院行为科学重点实验室
通讯作者Yan, Chao-Gan
作者单位1.Inst Psychol, CAS Key Lab Behav Sci, 16 Lincui Rd, Beijing 100101, Peoples R China
2.Univ Chinese Acad Sci, Dept Psychol, Beijing 100049, Peoples R China
3.Chinese Acad Sci, Inst Psychol, Int Big Data Ctr Depress Res, Beijing 100101, Peoples R China
4.Chinese Acad Sci, Inst Psychol, Magnet Resonance Imaging Res Ctr, Beijing 100101, Peoples R China
第一作者单位中国科学院行为科学重点实验室
通讯作者单位中国科学院行为科学重点实验室;  管理支撑系统
推荐引用方式
GB/T 7714
Wang, Yu-Wei,Chen, Xiao,Yan, Chao-Gan. Comprehensive evaluation of harmonization on functional brain imaging for multisite data-fusion[J]. NEUROIMAGE,2023,274:22.
APA Wang, Yu-Wei,Chen, Xiao,&Yan, Chao-Gan.(2023).Comprehensive evaluation of harmonization on functional brain imaging for multisite data-fusion.NEUROIMAGE,274,22.
MLA Wang, Yu-Wei,et al."Comprehensive evaluation of harmonization on functional brain imaging for multisite data-fusion".NEUROIMAGE 274(2023):22.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
Comprehensive evalua(6240KB)期刊论文出版稿限制开放CC BY-NC-SA请求全文
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Wang, Yu-Wei]的文章
[Chen, Xiao]的文章
[Yan, Chao-Gan]的文章
百度学术
百度学术中相似的文章
[Wang, Yu-Wei]的文章
[Chen, Xiao]的文章
[Yan, Chao-Gan]的文章
必应学术
必应学术中相似的文章
[Wang, Yu-Wei]的文章
[Chen, Xiao]的文章
[Yan, Chao-Gan]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。