PSYCH OpenIR
MER 2023: Multi-label Learning, Modality Robustness, and Semi-Supervised Learning
Lian, Zheng1; Sun, Haiyang2; Sun, Licai2; Chen, Kang3; Xu, Mngyu4; Wang, Kexin4; Xu, Ke2; He, Yu2; Li, Ying5; Zhao, Jinming6; Liu, Ye7; Liu, Bin4; Yi, Jiangyan4; Wang, Meng8; Cambria, Erik9; Zhao, Guoying10; Schuller, Björn W.11; Tao, Jianhua12
2023
会议名称MM 2023 - Proceedings of the 31st ACM International Conference on Multimedia
会议录名称MM 2023 - Proceedings of the 31st ACM International Conference on Multimedia
页码9610-9614
会议日期2023
会议地点不详
产权排序7
摘要

The first Multimodal Emotion Recognition Challenge (MER 2023)1 was successfully held at ACM Multimedia. The challenge focuses on system robustness and consists of three distinct tracks: (1) MER-MULTI, where participants are required to recognize both discrete and dimensional emotions; (2) MER-NOISE, in which noise is added to test videos for modality robustness evaluation; (3) MER-SEMI, which provides a large amount of unlabeled samples for semi-supervised learning. In this paper, we introduce the motivation behind this challenge, describe the benchmark dataset, and provide some statistics about participants. To continue using this dataset after MER 2023, please sign a new End User License Agreement2 and send it to our official email address3. We believe this high-quality dataset can become a new benchmark in multimodal emotion recognition, especially for the Chinese research community.

DOI10.1145/3581783.3612836
URL查看原文
收录类别EI
引用统计
被引频次:19[WOS]   [WOS记录]     [WOS相关记录]
文献类型会议论文
条目标识符https://ir.psych.ac.cn/handle/311026/46526
专题中国科学院心理研究所
作者单位1.Institute of Automation, Chinese Academy of Sciences (CAS), Beijing, China
2.University of Chinese Academy of Sciences, Beijing, China
3.Peking University, Beijing, China
4.Institute of Automation, CAS, Beijing, China
5.Shandong Normal University, Shandong, China
6.Renmin University of China, Beijing, China
7.Institute of Psychology, CAS, Beijing, China
8.Ant Group, Beijing, China
9.Nanyang Technological University, Singapore, Singapore
10.University of Oulu, Oulu, Finland
11.Imperial College London, London, United Kingdom
12.Tsinghua University, Beijing, China
推荐引用方式
GB/T 7714
Lian, Zheng,Sun, Haiyang,Sun, Licai,et al. MER 2023: Multi-label Learning, Modality Robustness, and Semi-Supervised Learning[C],2023:9610-9614.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
3581783.3612836.pdf(993KB)会议论文 开放获取CC BY-NC-SA浏览 下载
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Lian, Zheng]的文章
[Sun, Haiyang]的文章
[Sun, Licai]的文章
百度学术
百度学术中相似的文章
[Lian, Zheng]的文章
[Sun, Haiyang]的文章
[Sun, Licai]的文章
必应学术
必应学术中相似的文章
[Lian, Zheng]的文章
[Sun, Haiyang]的文章
[Sun, Licai]的文章
相关权益政策
暂无数据
收藏/分享
文件名: 3581783.3612836.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。