PSYCH OpenIR  > 中国科学院行为科学重点实验室
EEG-Based Evaluation of Aesthetic Experience Using BiLSTM Network
Wang, Peishan1,2; Feng, Haibei3,4; Du, Xiaobing3,4; Nie, Rui1,5; Lin, Yudi3,6; Ma, Cuixia4,7,8; Zhang, Liang1,2
第一作者Wang, Peishan
通讯作者Zhang, Liang(zhangl@psych.ac.cn)
通讯作者邮箱zhangl@psych.ac.cn(张亮)
摘要

Evaluation of aesthetic design fulfills a pivotal function in product development, which urges for an efficacious objective method to measure customers' experience. The stability and effectiveness of electroencephalography (EEG) make it a suitable tool for aesthetic experience measurement. Nevertheless, existing studies have several limitations, especially regarding the stimuli and the algorithm. The potential of an EEG-based deep learning model has not been verified in pinpointing subtle differences in physical product aesthetics. To fill the research gap in this issue, we recorded EEG signals in real-life scenarios when participants were presented with different types of physical smartphones, and asked participants to rate them from four dimensions of aesthetic experience (arousal, valence, likeness, and aesthetic evaluation). Then, the time-frequency data were fed into a spatial feature extraction network and an attention-based bidirectional long short-term memory (BiLSTM) optimized by the cross-entropy loss function. The result showed that at 16s window size, the four outcome models yielded the best joint recognition performance of aesthetic experience with an average accuracy of over 85% (arousal: 88.10%, valence: 87.97%, likeness: 85.99%, and aesthetic evaluation: 87.23%). It provides an objective cross-subject recognition method with multi-faceted evaluation results of aesthetic experience. Additionally, we verified the ability of EEG as a reliable and informative resource in terms of aesthetic experience evaluation, even with subtle differences. More practically, a future direction of incorporating EEG signals into subjective product aesthetics measurement could be given more credit.

关键词EEG aesthetic experience deep learning physical product evaluation
2023
语种英语
DOI10.1080/10447318.2023.2278926
发表期刊International Journal of Human-Computer Interaction
ISSN1044-7318
页码14
期刊论文类型综述
收录类别SCI ; SSCI
资助项目National Natural Science Foundation of China
出版者TAYLOR & FRANCIS INC
WOS关键词VISUAL AESTHETICS ; EMOTION RECOGNITION ; PRODUCT ; PREFERENCE
WOS研究方向Computer Science ; Engineering
WOS类目Computer Science, Cybernetics ; Ergonomics
WOS记录号WOS:001122516900001
Q分类Q1
资助机构National Natural Science Foundation of China
引用统计
被引频次:2[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符https://ir.psych.ac.cn/handle/311026/46594
专题中国科学院行为科学重点实验室
作者单位1.Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
2.Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
3.Beijing Key Laboratory of Human-Computer Interactions, Institute of Software, Chinese Academy of Sciences, Beijing, China
4.Department of Computer Science and Technology, University of Chinese Academy of Sciences, Beijing, China
5.Department of Biostatistics, University of Michigan Ann Arbor, Ann Arbor; MI, United States
6.Department of Computer Science, University of Southern California, Los Angeles; CA, United States
7.State Key Laboratory of Computer Science, Institute of Software, Chinese Academy of Sciences, Beijing, China
8.International Joint Laboratory of Artificial Intelligence and Emotional Interaction, Beijing Key Laboratory of Human-Computer Interactions, Beijing, China
第一作者单位中国科学院心理研究所
推荐引用方式
GB/T 7714
Wang, Peishan,Feng, Haibei,Du, Xiaobing,et al. EEG-Based Evaluation of Aesthetic Experience Using BiLSTM Network[J]. International Journal of Human-Computer Interaction,2023:14.
APA Wang, Peishan.,Feng, Haibei.,Du, Xiaobing.,Nie, Rui.,Lin, Yudi.,...&Zhang, Liang.(2023).EEG-Based Evaluation of Aesthetic Experience Using BiLSTM Network.International Journal of Human-Computer Interaction,14.
MLA Wang, Peishan,et al."EEG-Based Evaluation of Aesthetic Experience Using BiLSTM Network".International Journal of Human-Computer Interaction (2023):14.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Wang, Peishan]的文章
[Feng, Haibei]的文章
[Du, Xiaobing]的文章
百度学术
百度学术中相似的文章
[Wang, Peishan]的文章
[Feng, Haibei]的文章
[Du, Xiaobing]的文章
必应学术
必应学术中相似的文章
[Wang, Peishan]的文章
[Feng, Haibei]的文章
[Du, Xiaobing]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。