PSYCH OpenIR  > 中国科学院心理健康重点实验室
A Classification Framework for Depressive Episode using R-R Intervals from Smartwatch
Li, Fenghua1; Liu, Guoxiong2; Zou, Zhiling3; Yan, Yang1; Huang, Xin1; Liu, Xuanang4; Liu, Zhengkui1
2023
通讯作者Liu, Zhengkui(liuzk@psych.ac.cn)
会议名称IEEE Transactions on Affective Computing
会议录名称IEEE Transactions on Affective Computing
页码1-15
会议日期2023
会议地点不详
出版者IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
摘要

Depressive episode is key symptom collection of mood disorders. Early intervention can prevent it from happening or reduce its impact, and close monitoring can greatly improve medical management. However, most current monitoring methods are ex post facto, coarse in time granularity and resource consuming. In this study, we aimed to develop a cost-friendly and high usability depressive episode detection framework. In Phase I, we fitted instantaneous affective state models by using R-R intervals collected with photoplethysmogram sensors in smartwatches from laboratory experiments of 1107 participants. In Phase II we utilized the models from Phase I to record long-term affective experience of 2192 participants. Depressive episode models were fitted with affective experience time series. The best instantaneous affective states models achieved overall accuracies of 91% with 2 classes (neutral/ aroused) and 82% with 3 classes (joy/ neutral/ sadness), and the depressive episode models (less severe/ more severe) achieved an overall accuracy of 76% and a best accuracy of 88%. We investigated and discussed the performance differences of the models with multiple settings. We found person-based feature normalization is effective in improving model performance for subjective affect experience. We also found identification of diurnal mood variation may be critical in depressive episode detection.

会议主办者National Key R&D Program of China ; Young Scientist Startup Project of Institue of Psychology, Chinese Academy of Sciences
关键词depression detection depressive symptoms monitoring wearable device diurnal mood variation digital mental health
DOI10.1109/TAFFC.2023.3343463
收录类别EI
资助项目National Key R&D Program of China[2020YFC2003000] ; Young Scientist Startup Project of Institue of Psychology, Chinese Academy of Sciences[E3CX1315]
语种英语
WOS研究方向Computer Science
WOS类目Computer Science, Artificial Intelligence ; Computer Science, Cybernetics
WOS记录号WOS:001308401200071
引用统计
被引频次:1[WOS]   [WOS记录]     [WOS相关记录]
文献类型会议论文
条目标识符https://ir.psych.ac.cn/handle/311026/46596
专题中国科学院心理健康重点实验室
作者单位1.Key Lab of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
2.School of Psychology, Nanjing Normal University, Nanjing, China
3.Faculty of Psychology, Southwest University, Chongqing, China
4.Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
推荐引用方式
GB/T 7714
Li, Fenghua,Liu, Guoxiong,Zou, Zhiling,et al. A Classification Framework for Depressive Episode using R-R Intervals from Smartwatch[C]:IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC,2023:1-15.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
A Classification Fra(1879KB)会议论文 开放获取CC BY-NC-SA浏览 下载
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Li, Fenghua]的文章
[Liu, Guoxiong]的文章
[Zou, Zhiling]的文章
百度学术
百度学术中相似的文章
[Li, Fenghua]的文章
[Liu, Guoxiong]的文章
[Zou, Zhiling]的文章
必应学术
必应学术中相似的文章
[Li, Fenghua]的文章
[Liu, Guoxiong]的文章
[Zou, Zhiling]的文章
相关权益政策
暂无数据
收藏/分享
文件名: A Classification Framework for Depressive Episode using R-R Intervals from Smartwatch.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。