Institutional Repository of Key Laboratory of Mental Health, CAS
Unveiling the potential of machine learning in schizophrenia diagnosis: A meta-analytic study of task-based neuroimaging data | |
Wang, Xuan1,2,3,4,5; Yan, Chao1,2; Yang, Peng-yuan6; Xia, Zheng1; Cai, Xin-lu7,8; Wang, Yi3,4,5; Kwok, Sze Chai1,2,9,10; Chan, Raymond C. K.3,4,5 | |
第一作者 | Xuan Wang |
通讯作者邮箱 | cyan@psy.ecnu.edu.cn (chao yan) |
心理所单位排序 | 4 |
摘要 | The emergence of machine learning (ML) techniques has opened up new avenues for identifying biomarkers associated with schizophrenia (SCZ) using task-related fMRI (t-fMRI) designs. To evaluate the effectiveness of this approach, we conducted a comprehensive meta-analysis of 31 t-fMRI studies using a bivariate model. Our findings revealed a high overall sensitivity of 0.83 and specificity of 0.82 for t-fMRI studies. Notably, neuropsychological domains modulated the classification performance, with selective attention demonstrating a significantly higher specificity than working memory (beta = 0.98, z = 2.11, P = 0.04). Studies involving older, chronic patients with SCZ reported higher sensitivity (P <0.015) and specificity (P <0.001) than those involving younger, first-episode patients or high-risk individuals for psychosis. Additionally, we found that the severity of negative symptoms was positively associated with the specificity of the classification model (beta = 7.19, z = 2.20, P = 0.03). Taken together, these results support the potential of using task-based fMRI data in combination with machine learning techniques to identify biomarkers related to symptom outcomes in SCZ, providing a promising avenue for improving diagnostic accuracy and treatment efficacy. Future attempts to deploy ML classification should consider the factors of algorithm choice, data quality and quantity, as well as issues related to generalization. |
关键词 | attention machine learning meta-analysis schizophrenia task-based fMRI |
2023-12-29 | |
DOI | 10.1111/pcn.13625 |
发表期刊 | PSYCHIATRY AND CLINICAL NEUROSCIENCES |
ISSN | 1323-1316 |
页码 | 12 |
期刊论文类型 | 实证研究 |
收录类别 | SCI |
资助项目 | MOE (Ministry of Education of China) Project of Humanities and Social Sciences ; National Natural Science Foundation of China[32171084] ; Natural Science Foundation of Shanghai[21ZR1421000] ; Philip K. H. Foundation ; [20YJC190025] ; [2021ZD0200800] |
出版者 | WILEY |
WOS关键词 | NEGATIVE SYMPTOMS ; HIGH-RISK ; FUNCTIONAL CONNECTIVITY ; LATENT INHIBITION ; BRAIN NETWORKS ; PSYCHOSIS ; CLASSIFICATION ; FMRI ; INDIVIDUALS ; ABNORMALITIES |
WOS研究方向 | Neurosciences & Neurology ; Psychiatry |
WOS类目 | Clinical Neurology ; Neurosciences ; Psychiatry |
WOS记录号 | WOS:001134068300001 |
WOS分区 | Q1 |
资助机构 | MOE (Ministry of Education of China) Project of Humanities and Social Sciences ; National Natural Science Foundation of China ; Natural Science Foundation of Shanghai ; Philip K. H. Foundation |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | http://ir.psych.ac.cn/handle/311026/46748 |
专题 | 中国科学院心理健康重点实验室 |
通讯作者 | Yan, Chao |
作者单位 | 1.East China Normal Univ, Affiliated Mental Hlth Ctr ECNU, Sch Psychol & Cognit Sci, Key Lab Brain Funct Genom MOE&STCSM, Shanghai, Peoples R China 2.Shanghai Changning Mental Hlth Ctr, Shanghai, Peoples R China 3.Chinese Acad Sci, Neuropsychol & Appl Cognit Neurosci Lab, Beijing, Peoples R China 4.Chinese Acad Sci, Inst Psychol, CAS Key Lab Mental Hlth, Beijing, Peoples R China 5.Univ Chinese Acad Sci, Dept Psychol, Beijing, Peoples R China 6.Univ Ghent, Fac Sci, Ghent, Belgium 7.Hangzhou Normal Univ, Inst Brain Sci, Hangzhou, Peoples R China 8.Hangzhou Normal Univ, Sch Basic Med Sci, Dept Physiol, Hangzhou, Peoples R China 9.Duke Kunshan Univ, Data Sci Res Ctr, Div Nat & Appl Sci, Phylocognit Lab, Kunshan, Peoples R China 10.East China Normal Univ, Shanghai Key Lab Magnet Resonance, Shanghai, Peoples R China |
第一作者单位 | 中国科学院心理健康重点实验室 |
推荐引用方式 GB/T 7714 | Wang, Xuan,Yan, Chao,Yang, Peng-yuan,et al. Unveiling the potential of machine learning in schizophrenia diagnosis: A meta-analytic study of task-based neuroimaging data[J]. PSYCHIATRY AND CLINICAL NEUROSCIENCES,2023:12. |
APA | Wang, Xuan.,Yan, Chao.,Yang, Peng-yuan.,Xia, Zheng.,Cai, Xin-lu.,...&Chan, Raymond C. K..(2023).Unveiling the potential of machine learning in schizophrenia diagnosis: A meta-analytic study of task-based neuroimaging data.PSYCHIATRY AND CLINICAL NEUROSCIENCES,12. |
MLA | Wang, Xuan,et al."Unveiling the potential of machine learning in schizophrenia diagnosis: A meta-analytic study of task-based neuroimaging data".PSYCHIATRY AND CLINICAL NEUROSCIENCES (2023):12. |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | ||
Unveiling the potent(1104KB) | 期刊论文 | 出版稿 | 限制开放 | CC BY-NC-SA | 请求全文 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论