PSYCH OpenIR  > 中国科学院心理健康重点实验室
A predictive model combining connectomics and entropy biomarkers to discriminate long-term vagus nerve stimulation efficacy for pediatric patients with drug-resistant epilepsy
Cheng, Tung-yang1; Hu, Yingbing1,2; Qin, Xiaoya1,2; Ma, Jiayi3; Zha, Daqi1; Xie, Han3; Ji, Taoyun3,4; Liu, Qingzhu4; Wang, Zhiyan5,6; Hao, Hongwei1; Wu, Ye3,4; Li, Luming1,7
第一作者Cheng, Tung-yang
通讯作者邮箱wzyann@126.com(zhiyan wang) ; haohw@tsinghua.edu.cn (hongwei hao) ; dryewu@263.net (ye wu)
心理所单位排序5
摘要

AimsTo predict the vagus nerve stimulation (VNS) efficacy for pediatric drug-resistant epilepsy (DRE) patients, we aim to identify preimplantation biomarkers through clinical features and electroencephalogram (EEG) signals and thus establish a predictive model from a multi-modal feature set with high prediction accuracy.MethodsSixty-five pediatric DRE patients implanted with VNS were included and followed up. We explored the topological network and entropy features of preimplantation EEG signals to identify the biomarkers for VNS efficacy. A Support Vector Machine (SVM) integrated these biomarkers to distinguish the efficacy groups.ResultsThe proportion of VNS responders was 58.5% (38/65) at the last follow-up. In the analysis of parieto-occipital alpha band activity, higher synchronization level and nodal efficiency were found in responders. The central-frontal theta band activity showed significantly lower entropy in responders. The prediction model reached an accuracy of 81.5%, a precision of 80.1%, and an AUC (area under the receiver operating characteristic curve) of 0.838.ConclusionOur results revealed that, compared to nonresponders, VNS responders had a more efficient alpha band brain network, especially in the parieto-occipital region, and less spectral complexity of theta brain activities in the central-frontal region. We established a predictive model integrating both preimplantation clinical and EEG features and exhibited great potential for discriminating the VNS responders. This study contributed to the understanding of the VNS mechanism and improved the performance of the current predictive model. The long-term efficacy of VNS was assessed among 65 pediatric patients. Presurgical EEG analysis shows that VNS responders exhibit higher nodal efficiency in parietal-occipital EEG alpha activity and lower entropy in central-frontal EEG theta activity. The SVM model with clinical and EEG features for VNS efficacy shows high accuracy.image

关键词drug-resistant epilepsy functional connectivity Hilbert-Huang spectral entropy support vector machine Vagus nerve stimulation
2024-07-01
语种英语
DOI10.1111/cns.14751
发表期刊CNS NEUROSCIENCE & THERAPEUTICS
ISSN1755-5930
卷号30期号:7页码:12
期刊论文类型实证研究
URL查看原文
收录类别SCI
资助项目National Natural Science Foundation of China[82101549] ; National Key Research and Development Program of China[2021YFC2401205] ; Shenzhen International Cooperation Research Project[GJHZ20180930110402104]
出版者WILEY
WOS关键词REFRACTORY EPILEPSY ; EEG ; VNS ; CHILDREN ; THERAPY ; DESYNCHRONIZATION ; NETWORKS ; SUCCESS ; ALPHA ; MEG
WOS研究方向Neurosciences & Neurology ; Pharmacology & Pharmacy
WOS类目Neurosciences ; Pharmacology & Pharmacy
WOS记录号WOS:001268749700001
WOS分区Q1
资助机构National Natural Science Foundation of China ; National Key Research and Development Program of China ; Shenzhen International Cooperation Research Project
引用统计
被引频次:1[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符https://ir.psych.ac.cn/handle/311026/47781
专题中国科学院心理健康重点实验室
作者单位1.Tsinghua Univ, Sch Aerosp Engn, Natl Engn Res Ctr Neuromodulat, Beijing, Peoples R China;
2.Tsinghua Univ, Tsinghua Berkeley Shenzhen Inst, Shenzhen, Peoples R China;
3.Peking Univ First Hosp, Dept Pediat, Beijing, Peoples R China;
4.Peking Univ First Hosp, Pediat Epilepsy Ctr, Beijing, Peoples R China;
5.Chinese Acad Sci, Inst Psychol, CAS Key Lab Mental Hlth, Beijing, Peoples R China;
6.Univ Chinese Acad Sci, Dept Psychol, Beijing, Peoples R China;
7.Tsinghua Univ, IDG McGovern Inst Brain Res, Beijing, Peoples R China
推荐引用方式
GB/T 7714
Cheng, Tung-yang,Hu, Yingbing,Qin, Xiaoya,et al. A predictive model combining connectomics and entropy biomarkers to discriminate long-term vagus nerve stimulation efficacy for pediatric patients with drug-resistant epilepsy[J]. CNS NEUROSCIENCE & THERAPEUTICS,2024,30(7):12.
APA Cheng, Tung-yang.,Hu, Yingbing.,Qin, Xiaoya.,Ma, Jiayi.,Zha, Daqi.,...&Li, Luming.(2024).A predictive model combining connectomics and entropy biomarkers to discriminate long-term vagus nerve stimulation efficacy for pediatric patients with drug-resistant epilepsy.CNS NEUROSCIENCE & THERAPEUTICS,30(7),12.
MLA Cheng, Tung-yang,et al."A predictive model combining connectomics and entropy biomarkers to discriminate long-term vagus nerve stimulation efficacy for pediatric patients with drug-resistant epilepsy".CNS NEUROSCIENCE & THERAPEUTICS 30.7(2024):12.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
A predictive model c(2255KB)期刊论文出版稿开放获取CC BY-NC-SA浏览 下载
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Cheng, Tung-yang]的文章
[Hu, Yingbing]的文章
[Qin, Xiaoya]的文章
百度学术
百度学术中相似的文章
[Cheng, Tung-yang]的文章
[Hu, Yingbing]的文章
[Qin, Xiaoya]的文章
必应学术
必应学术中相似的文章
[Cheng, Tung-yang]的文章
[Hu, Yingbing]的文章
[Qin, Xiaoya]的文章
相关权益政策
暂无数据
收藏/分享
文件名: A predictive model combining connectomics and entropy biomarkers to discriminate long-term vagus nerve stimulation efficacy for pediatric patients with drug-resistant epilepsy.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。