PSYCH OpenIR  > 脑与认知科学国家重点实验室
Seeing Through the Mask: Recognition of Genuine Emotion Through Masked Facial Expression
Zhou, Ju1; Liu, Xinyu1; Wang, Hanpu1; Zhang, Zheyuan1; Chen, Tong1; Fu, Xiaolan2; Liu, Guangyuan1
第一作者Zhou, Ju
通讯作者Chen, Tong(c_tong@swu.edu.cn)
摘要

The purpose of facial expression recognition is to recognize the corresponding emotions. However, people tend to hide their emotions by displaying facial expressions that differ from those evoked by emotions. These inconsistent facial expressions are referred to as masked facial expressions (MFEs). The automatic recognition of hidden emotions within an MFE using image data is challenging. In this study, we find distinctive movement patterns in the facial action units (AUs) of MFE sequences through a detailed analysis. Considering our findings, we propose handcrafted features called dynamic AU intensity features (DAIFs) to represent AU movement. Furthermore, we develop a decoupled AU transformer (DAUT) model for recognition, where the decoupled convolution operators ensure that the temporal information in the DAIF is not damaged. To further improve the recognition performance, we design self-supervised clip prediction for pretraining of DAUT. Experimental results demonstrate that our proposed method performs exceptionally well across all tasks in the MFE dataset, particularly improving accuracy by nearly double on the most challenging 36-class task. This suggests that leveraging temporal information from facial AU movements is a reliable and effective technique for recognizing MFEs.

关键词Emotion recognition Gold Videos Face recognition Task analysis Feature extraction Transformers Decoupled convolution dynamic action unit intensity features (DAIFs) emotion recognition hidden emotion masked facial expression (MFE) vision Transformer (ViT)
2024
语种英语
DOI10.1109/TCSS.2024.3404611
发表期刊IEEE Transactions on Computational Social Systems
ISSN2329-924X
页码1-14
期刊论文类型综述
URL查看原文
收录类别EI
出版者IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
WOS关键词DATABASE ; MODEL
WOS研究方向Computer Science
WOS类目Computer Science, Cybernetics ; Computer Science, Information Systems
WOS记录号WOS:001248119900001
引用统计
文献类型期刊论文
条目标识符https://ir.psych.ac.cn/handle/311026/48052
专题脑与认知科学国家重点实验室
作者单位1.College of Electronic and Information Engineering, Southwest University, Chongqing, China;
2.State Key Laboratory of Brain and Cognitive Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
推荐引用方式
GB/T 7714
Zhou, Ju,Liu, Xinyu,Wang, Hanpu,et al. Seeing Through the Mask: Recognition of Genuine Emotion Through Masked Facial Expression[J]. IEEE Transactions on Computational Social Systems,2024:1-14.
APA Zhou, Ju.,Liu, Xinyu.,Wang, Hanpu.,Zhang, Zheyuan.,Chen, Tong.,...&Liu, Guangyuan.(2024).Seeing Through the Mask: Recognition of Genuine Emotion Through Masked Facial Expression.IEEE Transactions on Computational Social Systems,1-14.
MLA Zhou, Ju,et al."Seeing Through the Mask: Recognition of Genuine Emotion Through Masked Facial Expression".IEEE Transactions on Computational Social Systems (2024):1-14.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Zhou, Ju]的文章
[Liu, Xinyu]的文章
[Wang, Hanpu]的文章
百度学术
百度学术中相似的文章
[Zhou, Ju]的文章
[Liu, Xinyu]的文章
[Wang, Hanpu]的文章
必应学术
必应学术中相似的文章
[Zhou, Ju]的文章
[Liu, Xinyu]的文章
[Wang, Hanpu]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。