PSYCH OpenIR  > 脑与认知科学国家重点实验室
An efficient hybrid kernel extreme learning machine approach for early diagnosis of Parkinson's disease
Chen, Hui-Ling1; Wang, Gang2; Ma, Chao3; Cai, Zhen-Nao1,4; Liu, Wen-Bin1; Wang, Su-Jing5,6
摘要In this paper, we explore the potential of extreme learning machine (ELM) and kernel ELM (KELM) for early diagnosis of Parkinson's disease (PD). In the proposed method, the key parameters including the number of hidden neuron and type of activation function in ELM, and the constant parameter C and kernel parameter gamma in KELM are investigated in detail. With the obtained optimal parameters, ELM and KELM manage to train the optimal predictive models for PD diagnosis. In order to further improve the performance of ELM and KELM models, feature selection techniques are implemented prior to the construction of the classification models. The effectiveness of the proposed method has been rigorously evaluated against the PD data set in terms of classification accuracy, sensitivity, specificity and the area under the ROC (receiver operating characteristic) curve (AUC). Compared to the existing methods in previous studies, the proposed method has achieved very promising classification accuracy via 10-fold cross-validation (CV) analysis, with the highest accuracy of 96.47% and average accuracy of 95.97% over 10 runs of 10-fold CV. (C) 2015 Elsevier B.V. All rights reserved.
关键词Kernel Extreme Learning Machine Feature Selection Medical Diagnosis Parkinson's Disease
2016-04-05
语种英语
DOI10.1016/j.neucom.2015.07.138
发表期刊NEUROCOMPUTING
ISSN0925-2312
卷号184期号:0页码:131-144
期刊论文类型实证研究
URL查看原文
收录类别SCI
WOS关键词FEEDFORWARD NETWORKS ; CLASSIFICATION ; SPEECH ; PERFORMANCE ; ALGORITHMS ; RELEVANCE ; ACCURACY ; ENSEMBLE ; NUMBER
WOS标题词Science & Technology ; Technology
WOS研究方向Computer Science
WOS类目Computer Science, Artificial Intelligence
WOS记录号WOS:000374364300014
引用统计
文献类型期刊论文
条目标识符https://ir.psych.ac.cn/handle/311026/48312
专题脑与认知科学国家重点实验室
作者单位1.Wenzhou Univ, Coll Phys & Elect Informat, Wenzhou 325035, Zhejiang, Peoples R China;
2.Jilin Univ, Coll Comp Sci & Technol, Changchun 130012, Peoples R China;
3.Shenzhen Inst Informat Technol, Sch Digital Media, Shenzhen 518172, Peoples R China;
4.Northwestern Polytech Univ, Sch Comp Sci & Engn, Xian 710072, Peoples R China;
5.Chinese Acad Sci, Inst Psychol, State Key Lab Brain & Cognit Sci, Beijing 100101, Peoples R China;
6.Jilin Univ, Key Lab Symbol Computat & Knowledge Engn, Minist Educ, Changchun 130012, Peoples R China
推荐引用方式
GB/T 7714
Chen, Hui-Ling,Wang, Gang,Ma, Chao,et al. An efficient hybrid kernel extreme learning machine approach for early diagnosis of Parkinson's disease[J]. NEUROCOMPUTING,2016,184(0):131-144.
APA Chen, Hui-Ling,Wang, Gang,Ma, Chao,Cai, Zhen-Nao,Liu, Wen-Bin,&Wang, Su-Jing.(2016).An efficient hybrid kernel extreme learning machine approach for early diagnosis of Parkinson's disease.NEUROCOMPUTING,184(0),131-144.
MLA Chen, Hui-Ling,et al."An efficient hybrid kernel extreme learning machine approach for early diagnosis of Parkinson's disease".NEUROCOMPUTING 184.0(2016):131-144.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Chen, Hui-Ling]的文章
[Wang, Gang]的文章
[Ma, Chao]的文章
百度学术
百度学术中相似的文章
[Chen, Hui-Ling]的文章
[Wang, Gang]的文章
[Ma, Chao]的文章
必应学术
必应学术中相似的文章
[Chen, Hui-Ling]的文章
[Wang, Gang]的文章
[Ma, Chao]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。