PSYCH OpenIR  > 中国科学院行为科学重点实验室
Revealing the Parallel Multilingual Learning within Large Language Models
Yongyu Mu1; Peinan Feng1; Zhiquan Cao1; Yuzhang Wu1; Bei Li1; Chenglong Wang1; Tong Xiao1,2; Kai Song3; Tongran Liu4; Chunliang Zhang1,2; Jingbo Zhu1,2
2024
通讯作者邮箱lixiaoyumu9@gmail.com, xiaotong@mail.neu.edu.cn ; zhujingbo@mail.neu.edu.cn
会议名称EMNLP 2024 - 2024 Conference on Empirical Methods in Natural Language Processing, Proceedings of the Conference
会议录名称EMNLP 2024 - 2024 Conference on Empirical Methods in Natural Language Processing, Proceedings of the Conference
页码6976-6997
会议日期2024
会议地点不详
摘要

Large language models (LLMs) can handle multilingual and cross-lingual text within a single input; however, previous works leveraging multilingualism in LLMs primarily focus on using English as the pivot language to enhance language understanding and reasoning. Given that multiple languages are a compensation for the losses caused by a single language's limitations, it's a natural next step to enrich the model's learning context through the integration of the original input with its multiple translations. In this paper, we start by revealing that LLMs learn from Parallel Multilingual Input (PMI). Our comprehensive evaluation shows that PMI enhances the model's comprehension of the input, achieving superior performance than conventional in-context learning (ICL). Furthermore, to explore how multilingual processing affects prediction, we examine the activated neurons in LLMs. Surprisingly, involving more languages in the input activates fewer neurons, leading to more focused and effective neural activation patterns. This neural reaction coincidently mirrors the neuroscience insight about synaptic pruning, highlighting a similarity between artificial and biological 'brains'. Our parallel multilingual data and code could be found at 

收录类别EI
语种英语
文献类型会议论文
条目标识符https://ir.psych.ac.cn/handle/311026/48602
专题中国科学院行为科学重点实验室
作者单位1.NLP Lab, School of Computer Science and Engineering, Northeastern University, Shenyang, China
2.NiuTrans Research, Shenyang, China
3.Bytedance, Seattle, United States
4.CAS Key Laboratory of Behavioral Science, Institute of Psychology, CAS, Beijing, China
推荐引用方式
GB/T 7714
Yongyu Mu,Peinan Feng,Zhiquan Cao,et al. Revealing the Parallel Multilingual Learning within Large Language Models[C],2024:6976-6997.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
Revealing the Parall(3295KB)会议论文 开放获取CC BY-NC-SA浏览 下载
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Yongyu Mu]的文章
[Peinan Feng]的文章
[Zhiquan Cao]的文章
百度学术
百度学术中相似的文章
[Yongyu Mu]的文章
[Peinan Feng]的文章
[Zhiquan Cao]的文章
必应学术
必应学术中相似的文章
[Yongyu Mu]的文章
[Peinan Feng]的文章
[Zhiquan Cao]的文章
相关权益政策
暂无数据
收藏/分享
文件名: Revealing the Parallel Multilingual Learning within Large Language Models.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。