PSYCH OpenIR
Micro-expression recognition using dual-view self-supervised contrastive learning with intensity perception
Li, Jingting1,2; Zhou, Haoliang3,4; Qian, Yu1,4; Dong, Zizhao1; Wang, Su-Jing1,2
通讯作者Wang, Su-Jing(wangsujing@psych.ac.cn)
摘要Micro-expressions, as indicators of true emotions, have significant applications in medical care and public safety. These expressions are characterized by their short duration, low intensity, and localized occurrence. These characteristics lead to the small sample problem in micro-expressions, making feature learning challenging and limiting the improvement of recognition performance. To address this issue, we propose a multimodal contrastive learning pre-training model based on Action Unit (AU) intensity perception. We conducted an experiment to determine the minimum threshold for recognizing facial expressions. Using this threshold, we filtered a large volume of unsupervised samples. The first stage involves unsupervised multimodal contrastive learning, where the model learns from differences in facial actions across various modalities. Subsequently, the model is trained on the micro-expression recognition task using a small amount of labeled data, overcoming the limitations of small sample sizes. Comparative experiments using the MEGC2019-CD and the multimodal dataset CAS(ME)3 datasets demonstrate the superiority of our method. Our method is available at https: //github.com/MELABIPCAS/DVSCL.git.
关键词Micro-expression Small sample size problem Contrastive learning Self-supervised learning
2025-02-28
语种英语
DOI10.1016/j.neucom.2024.129142
发表期刊NEUROCOMPUTING
ISSN0925-2312
卷号619页码:13
收录类别SCI
资助项目National Nat-ural Science Foundation of China[62476269] ; National Nat-ural Science Foundation of China[62276252] ; National Nat-ural Science Foundation of China[62106256] ; Youth Innovation Promo-tion Association CAS, China
出版者ELSEVIER
WOS关键词INFORMATION
WOS研究方向Computer Science
WOS类目Computer Science, Artificial Intelligence
WOS记录号WOS:001391358100001
资助机构National Nat-ural Science Foundation of China ; Youth Innovation Promo-tion Association CAS, China
引用统计
文献类型期刊论文
条目标识符https://ir.psych.ac.cn/handle/311026/48617
通讯作者Wang, Su-Jing
作者单位1.Chinese Acad Sci, Inst Psychol, Key Lab Behav Sci, Beijing 100101, Peoples R China
2.Univ Chinese Acad Sci, Dept Psychol, Beijing 100049, Peoples R China
3.Tianjin Univ Technol, Tianjin 300382, Peoples R China
4.Jiangsu Univ Sci & Technol, Zhenjiang 212100, Peoples R China
推荐引用方式
GB/T 7714
Li, Jingting,Zhou, Haoliang,Qian, Yu,et al. Micro-expression recognition using dual-view self-supervised contrastive learning with intensity perception[J]. NEUROCOMPUTING,2025,619:13.
APA Li, Jingting,Zhou, Haoliang,Qian, Yu,Dong, Zizhao,&Wang, Su-Jing.(2025).Micro-expression recognition using dual-view self-supervised contrastive learning with intensity perception.NEUROCOMPUTING,619,13.
MLA Li, Jingting,et al."Micro-expression recognition using dual-view self-supervised contrastive learning with intensity perception".NEUROCOMPUTING 619(2025):13.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Li, Jingting]的文章
[Zhou, Haoliang]的文章
[Qian, Yu]的文章
百度学术
百度学术中相似的文章
[Li, Jingting]的文章
[Zhou, Haoliang]的文章
[Qian, Yu]的文章
必应学术
必应学术中相似的文章
[Li, Jingting]的文章
[Zhou, Haoliang]的文章
[Qian, Yu]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。