PSYCH OpenIR
A comparison of statistical learning of naturalistic textures between DCNNs and the human visual hierarchy
Lu, XinCheng1; Yuan, ZiQi3; Zhang, YiChi3; Ai, HaiLin1; Cheng, SiYuan1; Ge, YiRan1; Fang, Fang4,5,6,7,8; Chen, NiHong1,2,9
通讯作者Fang, Fang(ffang@pku.edu.cn) ; Chen, NiHong(nihongch@tsinghua.edu.cn)
摘要The visual system continuously adapts to the statistical properties of the environment. Existing evidence shows a close resemblance between deep convolutional neural networks (CNNs) and primate visual stream in neural selectivity to naturalistic textures above the primary visual processing stage. This study delves into the mechanisms of perceptual learning in CNNs, focusing on how they assimilate the high-order statistics of natural textures. Our results show that a CNN model achieves a similar performance improvement as humans, as manifested in the learning pattern across different types of high-order image statistics. While L2 was the first stage exhibiting texture selectivity, we found that stages beyond L2 were critically involved in learning. The significant contribution of L4 to learning was manifested both in the modulations of texture-selective responses and in the consequences of training with frozen connection weights. Our findings highlight learning-dependent plasticity in the mid-to-high-level areas of the visual hierarchy. This research introduces an AI-inspired approach for studying learning-induced cortical plasticity, utilizing DCNNs as an experimental framework to formulate testable predictions for empirical brain studies.
关键词CNN perceptual learning naturalistic texture psychophysics
2024-08-01
语种英语
DOI10.1007/s11431-024-2748-3
发表期刊SCIENCE CHINA-TECHNOLOGICAL SCIENCES
ISSN1674-7321
卷号67期号:8页码:2310-2318
收录类别SCI
资助项目National Natural Science Foundation of China[31971031] ; National Natural Science Foundation of China[31930053] ; National Natural Science Foundation of China[32171039] ; STI2030-Major Projects[2021ZD0203600] ; STI2030-Major Projects[2022ZD0204802] ; STI2030-Major Projects[2022ZD0204804]
出版者SCIENCE PRESS
WOS关键词IMAGE STATISTICS ; REPRESENTATIONS
WOS研究方向Engineering ; Materials Science
WOS类目Engineering, Multidisciplinary ; Materials Science, Multidisciplinary
WOS记录号WOS:001282858100010
资助机构National Natural Science Foundation of China ; STI2030-Major Projects
引用统计
文献类型期刊论文
条目标识符https://ir.psych.ac.cn/handle/311026/49252
通讯作者Fang, Fang; Chen, NiHong
作者单位1.Tsinghua Univ, Dept Psychol & Cognit Sci, Beijing 100084, Peoples R China
2.Tsinghua Univ, McGovern Inst Brain Res, IDG, Beijing 100084, Peoples R China
3.Tsinghua Univ, Dept Comp Sci & Technol, Beijing 100084, Peoples R China
4.Peking Univ, Sch Psychol & Cognit Sci, Beijing 100871, Peoples R China
5.Peking Univ, Beijing Key Lab Behav & Mental Hlth, Beijing 100871, Peoples R China
6.Peking Univ, Key Lab Machine Percept, Minist Educ, Beijing 100871, Peoples R China
7.Peking Univ, Peking Tsinghua Ctr Life Sci, Beijing 100871, Peoples R China
8.Peking Univ, McGovern Inst Brain Res, IDG, Beijing 100871, Peoples R China
9.Chinese Acad Sci, Inst Psychol, State Key Lab Brain & Cognit Sci, Beijing 100101, Peoples R China
推荐引用方式
GB/T 7714
Lu, XinCheng,Yuan, ZiQi,Zhang, YiChi,et al. A comparison of statistical learning of naturalistic textures between DCNNs and the human visual hierarchy[J]. SCIENCE CHINA-TECHNOLOGICAL SCIENCES,2024,67(8):2310-2318.
APA Lu, XinCheng.,Yuan, ZiQi.,Zhang, YiChi.,Ai, HaiLin.,Cheng, SiYuan.,...&Chen, NiHong.(2024).A comparison of statistical learning of naturalistic textures between DCNNs and the human visual hierarchy.SCIENCE CHINA-TECHNOLOGICAL SCIENCES,67(8),2310-2318.
MLA Lu, XinCheng,et al."A comparison of statistical learning of naturalistic textures between DCNNs and the human visual hierarchy".SCIENCE CHINA-TECHNOLOGICAL SCIENCES 67.8(2024):2310-2318.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Lu, XinCheng]的文章
[Yuan, ZiQi]的文章
[Zhang, YiChi]的文章
百度学术
百度学术中相似的文章
[Lu, XinCheng]的文章
[Yuan, ZiQi]的文章
[Zhang, YiChi]的文章
必应学术
必应学术中相似的文章
[Lu, XinCheng]的文章
[Yuan, ZiQi]的文章
[Zhang, YiChi]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。