PSYCH OpenIR  > 中国科学院行为科学重点实验室
Machine learning-based radiomics to distinguish pulmonary nodules between lung adenocarcinoma and tuberculosis
Li, Yuan1; Lyu, Baihan2; Wang, Rong3; Peng, Yue4; Ran, Haoyu5; Zhou, Bolun1; Liu, Yang1; Bai, Guangyu1; Huai, Qilin1; Chen, Xiaowei1; Zeng, Chun6; Wu, Qingchen5; Zhang, Cheng5; Gao, Shugeng1,7
第一作者Yuan Li
通讯作者邮箱gaoshugeng@cicams.ac.cn (shugeng gao)
心理所单位排序2
摘要

Background: Radiomics is increasingly utilized to distinguish pulmonary nodules between lung adenocarcinoma (LUAD) and tuberculosis (TB). However, it remains unclear whether different segmentation criteria, such as the inclusion or exclusion of the cavity region within nodules, affect the results.Methods: A total of 525 patients from two medical centers were retrospectively enrolled. The radiomics features were extracted according to two regions of interest (ROI) segmentation criteria. Multiple logistic regression models were trained to predict the pathology: (1) The clinical model relied on clinical-radiological semantic features; (2) The radiomics models (radiomics+ and radiomics-) utilized radiomics features from different ROIs (including or excluding cavities); (3) the composite models (composite+ and composite-) incorporated both above.Results: In the testing set, the radiomics+/- models and the composite+/- models still possessed efficient prediction performance (AUC >= 0.94), while the AUC of the clinical model was 0.881. In the validation set, the AUC of the clinical model was only 0.717, while that of the radiomics+/- models and the composite+/- models ranged from 0.801 to 0.825. The prediction performance of all the radiomics+/- and composite+/- models were significantly superior to that of the clinical model (p < 0.05). Whether the ROI segmentation included or excluded the cavity had no significant effect on these models (radiomics+ vs. radiomics-, composite+ model vs. composite-) (p > 0.05).Conclusions: The present study established a machine learning-based radiomics strategy for differentiating LUAD from TB lesions. The ROI segmentation including or excluding the cavity region may exert no significant effect on the predictive ability.

关键词lung adenocarcinoma machine learning pulmonary nodule radiomics tuberculosis
2024-01-08
语种英语
DOI10.1111/1759-7714.15216
发表期刊THORACIC CANCER
ISSN1759-7706
页码11
期刊论文类型实证研究
收录类别SCI
资助项目National Key Research and Development Program of China ; National Natural Science Foundation of China[82273129] ; [2021YFC2500900]
出版者WILEY
WOS关键词CANCER
WOS研究方向Oncology ; Respiratory System
WOS类目Oncology ; Respiratory System
WOS记录号WOS:001143087200001
WOS分区Q3
资助机构National Key Research and Development Program of China ; National Natural Science Foundation of China
引用统计
被引频次:2[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符https://ir.psych.ac.cn/handle/311026/46847
专题中国科学院行为科学重点实验室
通讯作者Gao, Shugeng
作者单位1.Chinese Acad Med Sci & Peking Union Med Coll, Canc Hosp, Dept Thorac Surg, Natl Canc Ctr,Canc Hosp,Natl Clin Res Ctr Canc, Beijing, Peoples R China
2.Chinese Acad Sci, Inst Psychol, CAS Key Lab Behav Sci, Beijing, Peoples R China
3.Chinese Acad Med Sci & Peking Union Med Coll, Fuwai Hosp, Dept Echocardiog, Natl Ctr Cardiovasc Dis, Beijing, Peoples R China
4.Capital Med Univ, Beijing Chao Yang Hosp, Dept Thorac Surg, Beijing, Peoples R China
5.Chongqing Med Univ, Dept Cardiothorac Surg, Affiliated Hosp 1, Chongqing, Peoples R China
6.Chongqing Med Univ, Dept Radiol, Affiliated Hosp 1, Chongqing, Peoples R China
7.Chinese Acad Med Sci & Peking Union Med Coll, Canc Hosp, Dept Thorac Surg, Natl Canc Ctr,Natl Clin Res Ctr Canc, Panjiayuannanli 17, Beijing 100021, Peoples R China
推荐引用方式
GB/T 7714
Li, Yuan,Lyu, Baihan,Wang, Rong,et al. Machine learning-based radiomics to distinguish pulmonary nodules between lung adenocarcinoma and tuberculosis[J]. THORACIC CANCER,2024:11.
APA Li, Yuan.,Lyu, Baihan.,Wang, Rong.,Peng, Yue.,Ran, Haoyu.,...&Gao, Shugeng.(2024).Machine learning-based radiomics to distinguish pulmonary nodules between lung adenocarcinoma and tuberculosis.THORACIC CANCER,11.
MLA Li, Yuan,et al."Machine learning-based radiomics to distinguish pulmonary nodules between lung adenocarcinoma and tuberculosis".THORACIC CANCER (2024):11.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
Machine learning-bas(2323KB)期刊论文出版稿开放获取CC BY-NC-SA浏览 下载
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Li, Yuan]的文章
[Lyu, Baihan]的文章
[Wang, Rong]的文章
百度学术
百度学术中相似的文章
[Li, Yuan]的文章
[Lyu, Baihan]的文章
[Wang, Rong]的文章
必应学术
必应学术中相似的文章
[Li, Yuan]的文章
[Lyu, Baihan]的文章
[Wang, Rong]的文章
相关权益政策
暂无数据
收藏/分享
文件名: Machine learning-based radiomics to distinguish pulmonary nodules between lung adenocarcinoma and tuberculosis.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。