Institutional Repository of Key Laboratory of Behavioral Science, CAS
Temporal-Noise-Aware Neural Networks for Suicidal Ideation Prediction Using Physiological Data | |
Liu, Niqi1,2,3; Liu, Fang4; Du, Xinxin2,3![]() ![]() ![]() | |
第一作者 | Liu, Niqi |
通讯作者邮箱 | zhaogz@psych.ac.cn ; liuyongjin@tsinghua.edu.cn |
心理所单位排序 | 4 |
摘要 | The robust generalization of deep learning models in the presence of inherent noise remains a significant challenge, especially when labels are ambiguous due to their subjective nature and noise is indiscernible in natural settings. In this article, we address a specific and important scenario of monitoring suicidal ideation (SI), where time-series data, such as galvanic skin response (GSR) and photoplethysmography (PPG), are susceptible to such noise. Current methods predominantly focus on image and text data or address artificially introduced noise, neglecting the complexities of natural noise in time-series analysis. To tackle this, we introduce a novel neural network model tailored for analyzing noisy physiological time-series data, named DBN_ConvNet, which integrates advanced encoding techniques with confidence learning training to enhance prediction performance. Another main contribution of our work is the collection of a specialized dataset of GSR and PPG signals derived from real-world environments for SI prediction. By employing this dataset, our DBN_ConvNet achieves a prediction accuracy of 76.67% and an F1 score of 0.74 in a binary classification task, outperforming state-of-the-art methods. Furthermore, comprehensive evaluations have been conducted on three other well-known public datasets with artificially introduced noise to test the DBN_ConvNet's capabilities rigorously. These tests consistently demonstrated DBN_ConvNet's superior performance by achieving an improvement of more than 10% in both accuracy and F1 score compared to the baseline methods. |
关键词 | Noise Noise measurement Physiology Feature extraction Biomedical monitoring Training Predictive models Depression Electronic mail Convolution Learning with noise peripheral physiological signals suicidal ideation prediction |
2025-01-09 | |
语种 | 英语 |
DOI | 10.1109/TCSS.2024.3523928 |
发表期刊 | IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS
![]() |
ISSN | 2329-924X |
页码 | 13 |
期刊论文类型 | 综述 |
收录类别 | SCI |
资助项目 | Natural Science Foundation of China[U2336214] ; National Key Research and Development Plan[2018YFC0831001] ; China Postdoctoral Science Foundation[2024M751591] |
出版者 | IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC |
WOS关键词 | HEART-RATE-VARIABILITY ; COLLEGE-STUDENTS ; MALE PRISONERS ; DEPRESSION ; REACTIVITY ; PREVALENCE ; EMOTION ; AROUSAL ; MOOD |
WOS研究方向 | Computer Science |
WOS类目 | Computer Science, Cybernetics ; Computer Science, Information Systems |
WOS记录号 | WOS:001395125500001 |
WOS分区 | Q2 |
资助机构 | Natural Science Foundation of China ; National Key Research and Development Plan ; China Postdoctoral Science Foundation |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | https://ir.psych.ac.cn/handle/311026/48632 |
专题 | 中国科学院行为科学重点实验室 |
通讯作者 | Zhao, Guozhen; Liu, Yong-Jin |
作者单位 | 1.Inst Psychol, CAS Key Lab Behav Sci, Beijing 100101, Peoples R China 2.Tsinghua Univ, Dept Comp Sci & Technol, BNRist, Beijing 100084, Peoples R China 3.MOE Key Lab Pervas Comp, Beijing 100084, Peoples R China 4.Commun Univ China, Sch Informat & Commun Engn, Beijing 100024, Peoples R China 5.Univ Chinese Acad Sci, Beijing 100049, Peoples R China 6.Multimodal Sensing & Comp Lab, Beijing 100083, Peoples R China 7.Tsinghua Univ, Dept Psychol & Cognit Sci, Beijing 100084, Peoples R China |
第一作者单位 | 中国科学院行为科学重点实验室 |
通讯作者单位 | 中国科学院行为科学重点实验室 |
推荐引用方式 GB/T 7714 | Liu, Niqi,Liu, Fang,Du, Xinxin,et al. Temporal-Noise-Aware Neural Networks for Suicidal Ideation Prediction Using Physiological Data[J]. IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS,2025:13. |
APA | Liu, Niqi.,Liu, Fang.,Du, Xinxin.,Shu, Yezhi.,Liu, Xu.,...&Liu, Yong-Jin.(2025).Temporal-Noise-Aware Neural Networks for Suicidal Ideation Prediction Using Physiological Data.IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS,13. |
MLA | Liu, Niqi,et al."Temporal-Noise-Aware Neural Networks for Suicidal Ideation Prediction Using Physiological Data".IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS (2025):13. |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | ||
Temporal-Noise-Aware(1513KB) | 期刊论文 | 出版稿 | 开放获取 | CC BY-NC-SA | 浏览 下载 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论