PSYCH OpenIR  > 中国科学院行为科学重点实验室
Temporal-Noise-Aware Neural Networks for Suicidal Ideation Prediction Using Physiological Data
Liu, Niqi1,2,3; Liu, Fang4; Du, Xinxin2,3; Shu, Yezhi2,3; Liu, Xu6; Wang, Lan6; Zhao, Guozhen1,5,6; Mu, Wenting7; Liu, Yong-Jin2,3
第一作者Liu, Niqi
通讯作者邮箱zhaogz@psych.ac.cn ; liuyongjin@tsinghua.edu.cn
心理所单位排序4
摘要

The robust generalization of deep learning models in the presence of inherent noise remains a significant challenge, especially when labels are ambiguous due to their subjective nature and noise is indiscernible in natural settings. In this article, we address a specific and important scenario of monitoring suicidal ideation (SI), where time-series data, such as galvanic skin response (GSR) and photoplethysmography (PPG), are susceptible to such noise. Current methods predominantly focus on image and text data or address artificially introduced noise, neglecting the complexities of natural noise in time-series analysis. To tackle this, we introduce a novel neural network model tailored for analyzing noisy physiological time-series data, named DBN_ConvNet, which integrates advanced encoding techniques with confidence learning training to enhance prediction performance. Another main contribution of our work is the collection of a specialized dataset of GSR and PPG signals derived from real-world environments for SI prediction. By employing this dataset, our DBN_ConvNet achieves a prediction accuracy of 76.67% and an F1 score of 0.74 in a binary classification task, outperforming state-of-the-art methods. Furthermore, comprehensive evaluations have been conducted on three other well-known public datasets with artificially introduced noise to test the DBN_ConvNet's capabilities rigorously. These tests consistently demonstrated DBN_ConvNet's superior performance by achieving an improvement of more than 10% in both accuracy and F1 score compared to the baseline methods.

关键词Noise Noise measurement Physiology Feature extraction Biomedical monitoring Training Predictive models Depression Electronic mail Convolution Learning with noise peripheral physiological signals suicidal ideation prediction
2025-01-09
语种英语
DOI10.1109/TCSS.2024.3523928
发表期刊IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS
ISSN2329-924X
页码13
期刊论文类型综述
收录类别SCI
资助项目Natural Science Foundation of China[U2336214] ; National Key Research and Development Plan[2018YFC0831001] ; China Postdoctoral Science Foundation[2024M751591]
出版者IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
WOS关键词HEART-RATE-VARIABILITY ; COLLEGE-STUDENTS ; MALE PRISONERS ; DEPRESSION ; REACTIVITY ; PREVALENCE ; EMOTION ; AROUSAL ; MOOD
WOS研究方向Computer Science
WOS类目Computer Science, Cybernetics ; Computer Science, Information Systems
WOS记录号WOS:001395125500001
WOS分区Q2
资助机构Natural Science Foundation of China ; National Key Research and Development Plan ; China Postdoctoral Science Foundation
引用统计
文献类型期刊论文
条目标识符https://ir.psych.ac.cn/handle/311026/48632
专题中国科学院行为科学重点实验室
通讯作者Zhao, Guozhen; Liu, Yong-Jin
作者单位1.Inst Psychol, CAS Key Lab Behav Sci, Beijing 100101, Peoples R China
2.Tsinghua Univ, Dept Comp Sci & Technol, BNRist, Beijing 100084, Peoples R China
3.MOE Key Lab Pervas Comp, Beijing 100084, Peoples R China
4.Commun Univ China, Sch Informat & Commun Engn, Beijing 100024, Peoples R China
5.Univ Chinese Acad Sci, Beijing 100049, Peoples R China
6.Multimodal Sensing & Comp Lab, Beijing 100083, Peoples R China
7.Tsinghua Univ, Dept Psychol & Cognit Sci, Beijing 100084, Peoples R China
第一作者单位中国科学院行为科学重点实验室
通讯作者单位中国科学院行为科学重点实验室
推荐引用方式
GB/T 7714
Liu, Niqi,Liu, Fang,Du, Xinxin,et al. Temporal-Noise-Aware Neural Networks for Suicidal Ideation Prediction Using Physiological Data[J]. IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS,2025:13.
APA Liu, Niqi.,Liu, Fang.,Du, Xinxin.,Shu, Yezhi.,Liu, Xu.,...&Liu, Yong-Jin.(2025).Temporal-Noise-Aware Neural Networks for Suicidal Ideation Prediction Using Physiological Data.IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS,13.
MLA Liu, Niqi,et al."Temporal-Noise-Aware Neural Networks for Suicidal Ideation Prediction Using Physiological Data".IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS (2025):13.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
Temporal-Noise-Aware(1513KB)期刊论文出版稿开放获取CC BY-NC-SA浏览 下载
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Liu, Niqi]的文章
[Liu, Fang]的文章
[Du, Xinxin]的文章
百度学术
百度学术中相似的文章
[Liu, Niqi]的文章
[Liu, Fang]的文章
[Du, Xinxin]的文章
必应学术
必应学术中相似的文章
[Liu, Niqi]的文章
[Liu, Fang]的文章
[Du, Xinxin]的文章
相关权益政策
暂无数据
收藏/分享
文件名: Temporal-Noise-Aware Neural Networks for Suicidal Ideation Prediction Using Physiological Data.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。