Choice Reversals across Certainty，Uncertainty and Risk：The Equate－toD ifferen tiate h terpretation

Li Shu
（Center for Social \＆Econam ic B ehavior，Institute of Psychology，Chinese Academy of Sciences，Beijing 10010，China）

Abstract

A generalized weak dam inance app roach is used to test choice reversals across certainty，uncertainty and risk In the case of pairwise choice where each alternative is generally better than the other on a single dimension，this app roach models much human choice behavior as a process in which people seek to equate smaller difference between alternatives on one dimension，thus leaving the greater one－dimensional difference to be differentiated as the determinant of the final choice．The choice reversals are therefore seen as a consequence of the fact that what is seen as the greatest one－dmensional difference on one trial is no longer seen as the greatest on another trial A＂matching＂task was designed to exam ine whether the know ledge of the value difference of the paired outcomes along each dimension will pem it prediction of preferential choice．The overall test－retest results for various choosing tasks favor the equate－to－differentiate explanation The finding supports the clam that the repeated choices can be consistent not because the chosen altemative is always of the greatest overall worth but because final choice is consistently based on a single fixed dimension on each trial

Key words repeated choices，choice reversals，weak dom inance

1 Introduction

A widespread characteristic of human choice is that peop le are not perfectly consistent in their choices When faced with repeated choices among alternatives， people often reverse their choices It is difficult to con－ ceive of a model which could provide a systematic ac－ count of such inconsistencies or variability in choice behavior Choice reversals are predicted as a by－product of gaps in the choice rule by some authors （e．g，Butler ${ }^{[1]}$ ）．To accommodate these reversals， many theorists treat choice variability as＂errors of judgment＂or＂lapses of attention＂and essentially ig－ nore them．Some theorists hypothesize that choices should be defined in a probabilistic fashion（For de－ tailed discussion about the probabilistic properties of choice models see Luce \＆Suppes ${ }^{[2]}$ ；Tversky ${ }^{[3]}$ ；and Tversky \＆Russo ${ }^{[4]}$ ）．On each trial，participants state their choice A stochastic choice of alternative i over alternative j is then said to occur when $\mathrm{P}(i ; i, j)$ ，the proportion of time i is chosen over j ，exceeds 0.5 ．

As an alternative approach to human decision making，the equate－to－differentiate model ${ }^{[5 \sim 9]}$ is pro
posed as a means by which the dom inance rule can be made applicable in more general cases The model is based on the observation that human decision makers are cognitively unable to perform a multidimensional integration Weak dominance states that if alternative A is at least as good as alternative B on all attributes， and alternative A is definitely better than alternative B on at least one attribute，then alternative A dom inates alternative B（cf Lee ${ }^{[10]}$ ；von W interfeldt \＆Ed－ wards ${ }^{[11]}$ ）．The equate－to－differentiate model postu－ lates that，in order to utilize the very intuitive or com－ pelling rule of weak dominance to reach a binary choice between A and B in more general cases，the final deci－ sion is based on detecting A dominating B if there exists at least one j such that $\mathrm{U}_{\mathrm{Aj}}\left(x_{j}\right)-\mathrm{U}_{\mathrm{Bj}}\left(x_{j}\right)>0$ having subjectively treated all $\mathrm{U}_{\mathrm{Aj}}\left(x_{j}\right)-\mathrm{U}_{\mathrm{Bj}}\left(x_{j}\right)<0$ as $\mathrm{U}_{\mathrm{Aj}}\left(x_{j}\right)-\mathrm{U}_{\mathrm{Bj}}\left(x_{j}\right)=0$ ，or，detecting B dom inating A if there exists at least one j such that $\mathrm{U}_{\mathrm{Bj}}\left(x_{j}\right)-\mathrm{U}_{\mathrm{Aj}}$ $\left(x_{j}\right)>0$ having subjectively treated all $\mathrm{U}_{\mathrm{Bj}}\left(x_{j}\right)-\mathrm{U}_{\mathrm{Aj}}$ $\left(x_{j}\right)<0$ as $\mathrm{U}_{\mathrm{Bj}}\left(x_{j}\right)-\mathrm{U}_{\mathrm{Aj}}\left(x_{j}\right)=0$ ，where $x_{j}(j=$ $1, \ldots, M)$ is the objective value of each alternative on Dimension j（for an axiomatic analysis，see Li $\left.{ }^{[6]}\right)$ ．The principle of deciding which dimensional

[^0]difference is to be equated and which is to be differen－ tiated is not the importance of the dimension（such as lexicographic rule ${ }^{[12]}$ ）but the intra－dimensional difference The smaller differences of either insignifi－ cant dimension or mportant dimension will be equated thus leaving the greater dimensional difference to be differentiated as the determinant of the final choice．

The application of the equate－to－differentiate rule is straightforward，allowing the choice reversal phe－ nomenon to be accounted for and to be predicted The equate－to－differentiate view would be that in situations where there is variability in choice the alternative cho－ sen on any one trial will be detemined by the per－ ceived greater dimensional difference on which the choice is based，and that there is variability in choice because the deteminant dimensional difference chan－ ges In other words，it is not the evaluation of the 0^{-} verall worth of the offered alternatives but the evalua－ tion of the greatest one－dimensional difference between alternatives that is regarded as the cause which is most likely to be responsible for a tendency to reverse choice．Thus choice variability can be isolated as loca－ ted in the change of deteminant dimension Such a ＂one－dimensional difference＂account has been sup－ ported by using a＂matching＂task to exam ine whether the know ledge of the value difference of the paired out comes along each dimension will pemit prediction of choices in decision making under risk ${ }^{[13 \sim 15]}$ and in de－ cision making under uncertainty ${ }^{[9,16]}$ ．These findings fit nicely with the equate－to－differentiate app roach

Instead of accounting for choice reversals by as－ suming that the utilities of the choice options are close （e g，Leland ${ }^{[17]}$ ），the present research is based on the assump tion that choice problem s whose deteminant dimensional differences are smaller would be most like－ ly to produce choice reversals（i e．， $\mathrm{P}(i ; i, j) \approx$ 0.5 ）．Theoretically，problems with such characteris－ tics exist throughout decision making under certainty， decision making under risk and decision making under uncertainty．Evidence of stochastic choice of alterna－ tive can be obtained by using a test－retest format but， on each test，matching infomation should pemit pre－ diction of the alternative chosen

The am of this research was to see whether the e^{-} quate－to－differentiate approach could provide a possible
explanation and prediction for the observed choice re－ versals The following choices across certainty，uncer－ tainty and risk represent an attempt to carry out such a test

2 Method

To accomplish this goal，three choice problems across certainty，uncertainty and risk were constructed so as to give rise to choice reversal data

2． 1 R iskless Choice

2．1．1 Participants The present questionnaire study was done with college students．Participants were 40 undergraduate students enrolled in General Psychology courses at Hwa Nan W omen＇s College．They were unfa－ miliar with research on behavioral decisionmaking pri－ or to the study and participated as volunteers
21．2 Materials and Procedure The choice prob－ lem（Choice 1）used is riskless one，a choice between two university admissions One is superior in the uni－ versity offered while the other is superior in the speciality offered The choice problem，coup led with a ＂matching＂task where the outcomes of alternatives on each dimension are paired，was given to the partici－ pants The choice and matching tasks are shown here exactly as they were posed to participants

CHO ICE 1 magine that，as a candidate for the National Entrance Exam ination，you smultaneously re－ ceived two admission notices after the exam ination，in which the universities and specialities to which you were admitted were as follows，which of them would you accept？

Adm ission A：To a local ordinary university under the jurisdiction of the Provincial Government；2nd favourite speciality．

Admission B：To a local key university under the jurisdiction of the Provincial Government； 3 rd favourite speciality．

Please circle your choice：A B
Matching（Circle the one whose alternatives are most different）

C．＂local ordinary university＂vs＂local key uni－ versity＂

D．＂2nd favourite speciality＂vs＂ 3 rd favourite speciality＂

The choice and matching tasks were given tw ice to the same student participants in booklets with an inter－ val of 79 days W hen the completed questionnaires were collected，the participants were then debriefed

22 Choice under Uncertainty

221 Participants A total of 29 volunteer under－ graduate students at the Deparment of Psychology at Zhejiang University participated in this questionnaire study．

2． 2 Materils and Procedure The second

 choice problem（Choice 2）represents choice under uncertainty．It is a modified version of a choice prob－ lem reported by $\mathrm{Li}^{[16]}$ ．In the original choice prob－ lem，the alternative chosen most often（ 71% ）is the sure gain of $\$ 25^{*}$ ．In order to make the choice more even，the sure gain is reduced from 25 in the original to 15 in the present one．This is based on the considera－ tion that the judged difference between＂a sure gain of$15 "$ and＂an unknown chance to gain nothing＂ should be smaller than that between＂a sure gain of $\$ 25$＂and＂an unknown chance to gain nothing＂， thus leading to choosing uncertainty option（choosing the op tion with the greater best possible outcome having treated the worst possible outcomes as subjectively e^{-} qual）．The choice and matching tasks read as follows：

CHO ICE 2

Choice（Circle the alternative you would prefer to have）

A．A sure gain of 15 ．
B．An unknown chance to gain an unknown a^{-} mount of money more than 15 or to gain nothing

Matching（Circle the one whose alternatives are most different）

C．＂A sure gain of 15 ＂vs＂An unknown chance to gain an unknown amount of money more than $15^{\prime \prime}$

D．＂A sure gain of 15 ＂vs＂An unknown chance to gain nothing＂

The choice and matching taskswere given twice to the same group of participants in bookletswith an inter－ val of 39 days

23 Choice under R isk

2．3． 1 Participants The participants were 27 vol－
unteers who were senior executives working at the B ank of China，Fujian B ranch
2 3． 2 Materials and Procedure The third choice problem is one under risk In this choice（Choice 3）， individuals are presented with two gambles，one featu－ ring a high probability of winning a modest sum of money，the other featuring a low probability of winning a larger amount of money．According to Kahneman and Tversky ${ }^{[18]}$ ，most people will choose the gamble in which winning is more probable (0.80) ，that is， Al^{-} ternative A ．On the other hand，the equate－to－differen－ tiate model suggests that decreasing the value of the payoffs will result in a greater overall preference for Al^{-} ternative B ，the one which offers the larger prize but in which winning is not probable（ 0.40 ）．Therefore， when the gamble probabilities meet prospect theory＇s postulate but the gamble payoffs meet that of the e－ quate－to－differentiate model，the offered alternatives would be expected to be equally attractive Booklets， which contained the following choice and matching tasks，were adm inistered to the participants wice with an interval of 63 days

CHO ICE 3

Choice（Circle the alternative you would prefer to have）

A．You have a 80% chance of getting 30 ，but a 20% chance of getting nothing

B．You have a 40% chance of getting 60 ，but a 60% chance of getting nothing

Matching（Circle the one whose alternatives are most different）

C．＂ 80% to win $30 "$ vs＂ 40% to win $60 "$
D．＂ 20% to w in nothing＂vs＂ 60% to w in noth－ ing＂

3 Results and Discussion

The overall statistical results are summarized in Table 1．It can be seen that Choice 1 is constructed so that Admission A is better than Admission B on the ＂speciality＂dmension while Admission B is better than Adm ission A on the＂university＂dmension It is reasoned by the equate－to－differentiate＇s one－dimension－ al difference account that if the participant thinks that one of the two pairs is the＂most equivalent＂according to his or her utilities，he or she will choose the alterna－

[^1]tive with the better outcome in the＂most different＂ pair That is，participants who selected Admission A （orB），tend to base their final choice on only the＂ speciality＂（or＂university＂）dimension，having trea－
ted the values on the＂university＂（or＂speciality＂） dimension as if they were equal To express this opera－ tionally，if C（D）is circled most different then B（A） will then be chosen，and vice versa

Table 1 Statistical data for the test－retest results

No．of choice problem	N	I	r	\varnothing_{1}	\varnothing_{2}	R^{2}
1	40	79	0． 23	－0．30＊	－0．34＊	0． 12 ＊
2	29	39	0． 25	－0．40＊	－0． 40 ＊	0． 27 ＊＊
3	27	63	0． 32	－0． $47^{* *(1)}$	－0． 54 ＊＊	0． 34 ＊＊

Note．$N=$ number of participant used：I $=$ test－retest interval in days；$r=$ test－retest correlation（a reliability coefficient）（from Table 4 ）；$\emptyset_{1}=\mathrm{phi}$ at the first test（from Table 2）；$\varnothing_{2}=$ phi at the second test（from Table 3）；$R^{2}=$ the proportion of variance in changing choice accounted by changing matching（from Table 5）．

In the light of a rep resentation system（with the best possible and the worst possible outcome dimen－ sions）to describe both Choices 2 （as shown in Figure 1）and 3，Alternative $A^{(2)}$ is seen as better than Alter－ native B on the worst possible outcome dmension while A lternative B is seen as better than Alternative A on the best possible outcome dimension，assum ing that what peop le ultimately wanted in hand is an amount to win but not a chance of winning It is anticipated by the equate－to－differentiate model that，in order to uti－ lize weak dom inance to reach a decision，people have to＂equate＂smaller difference between options on ei－ ther the best possible or the worst possible outcome di－ mension，thus leaving the greater one－dimensional
difference to be differentiated as the detem inant of the final choice．That is，if A lternative A is chosen，the participant should choose the pair of two＂worst possi－ ble outcomes＂（D）as most different，thus leading to an＂am to avoid the worst＂process On the other hand，if Alternative B is chosen then the participant should choose the pair of two＂best possible outcomes＂ （C）as most different，thus leading to an＂am for the best＂process

The observed results of the se equate－to－differenti－ ate predictions across all the three choice problems from the first and second trial are shown in Tables $2 \sim$ Table 3 respectively．

Table 2 Choice and matching data from the first trial in Choices $1 \sim 3$

		CHO ICE 1		CHO ICE 2		CHO ICE 3	
		Choice		Choice		Choice	
		A	B	A	B	A	B
Matching	C	6	（14）	2	（13）	3	（8）
	D	（12）	8	（7）	7	（12）	4

Note．The data in brackets are numbers of respondents who chose according to the equate－to－differentiate model
Table 3 Choice and matching data from the second trial in Choices $1 \sim 3$

		CHO ICE 1		CHO ICE 2		CHO ICE 3	
		Choice		Choice		Choice	
		A	B	A	B	A	B
Matching	C	5	（17）	1	（12）	3	（8）
	D	（10）	8	（7）	9	（13）	3

Note．The data in brackets are numbers of respondents who chose according to the equate－to－differentiate model

[^2]Choice 2

Worst Possible Outcome in Logarithmic Scale
Fig． 1 The representation of Choice 2 by app lying a logarithmic utility function

An analysis of the contingency tables reveals that the relevant \varnothing（phi）coefficients relating choice and matching for both the first and second tests were significant，falling between 0.30 and 0.54 ，with a mean of 0.41 ．In particular，there is a pretty large effect（eta squared）of the＂matching＂of paired out comes on choice，that is，matching significantly accounted for $9.0 \%, 16.0 \%$ and 22.1% of the choice variance in Choice 1，Choice 2 and Choice 3 from the first trial and $11.6 \%, 16.0 \%$ and 29.2% of the choice variance in Choice 1，Choice 2 and Choice 3 from the second trial respectively．The present equate－to－differentiate model does not assume that the
individual is able to perform a utility－integration calcu－ lation，and instead holds that when dom inance does not exist，the choice then has to be made according to sub－ jective dom inance detecting rather than any kind of o^{-} verall maximizing The explanatory mechanism provid－ ed by the equate－to－differentiate model is a coherent one across the three decision domains Taken together， know ledge of paired＂most different＂outcomes chosen by participants does permit a satisfactory exp lanation or prediction of the observed choice preferences Such a finding，together with those obtained in other decision problem ${ }^{[8,9,13 \sim 15]}$ ，adds to evidence pointing to funda－ mental limitations in people＇s capacity to process infor－ mation

On the other hand，the 3 choice problems test－re－ test reliabilities fell between 0.23 and 0.32 in an average 60 －day interval（ see Table 4）．None of them is significant A number of participants，choices （ 37.5% in Choice 1， 31% in Choice 2 and 33% in Choice 3）changed after the test－retest interval（see Table 4）．The generally low reliability confims the present prediction that stochastic choice of alternative can be obtained by using a test－retest format and that choice is not deterministic but probabilistic．The in－ consistencies observed will pose greater challenges for conventional choice models to cope effectively with these difficulties

Table 4 A contingency table for the test－retest data to indicate choice consistency in Choices $1 \sim 3$

		CHO ICE 1		CHO ICE 2		CHO ICE 3	
		Trial 1		Trial 1		Trial 1	
		A	B	A	B	A	B
Trial 2	A	（9）	6	（4）	4	（11）	5
	B	9	（16）	5	（16）	4	（7）

Note．The data in brackets are the numbers of respondents who made consistent choices across the first and second trials

The most relevant finding（see Table 5）is that the change of choice can be accounted for by the change of matching The effect size（proportion of va－ riance accounted for）is $0.12,0.27$ and 0.34 in Choice 1，Choice 2 and Choice 3 and is significant for all the three domains of choices Thus，the results sup－ port the notion that participants do not adopt different decision rules in their repeated choices It seem s that the resulting inconsistent responses in all three domains
of choice can be reasonably accounted for by the e^{-} quate－to－differentiate rule in a consistent way．It is therefore expected that choice reversals in repeated measurement and other peplexing paradoxical patterns of behavior should be observed in fact when people＇s equate－to－differentiate strategy（deciding which dimen－ sional difference is to be equated and which is to be differentiated）is caused to change．

Table 5 A contingency table for the test－retest data to indicate choice consistency and matching consistency in Choices $1 \sim 3$

Note $\mathrm{V}=$ respondents whose choices or matching were varied across the first and second trials； $\mathrm{U}=$ respondents whose choices ormatching were unva－ ried across the first and second trials The data in brackets are the numbers of respondents whose choice strategy co－varied with their matching strategy．

4 Concluding Remarks

In sum，existing psychological models are suc－ cessful only when considering crude measures of fit， such as the overall percentage of correct p redictions or explanations based on randomly chosen stmuli They fail to describe two very basic facts about human deci－ sion making behavior－the variability and the temporal evolution of preferences Even when results are highly significant，previous theories predict only modal re－ sponses，with no systematic accounting forminority re－ sponses

The present expermental results are of interest because they account for temporal features of the deliberation process and suggest that observed choices as well as choice reversals are systematic，consistent， and predictable，and that this is so without resort to an ad hoc assumption that the probability of choosing one alternative over another is an increasing function of the overall utility of the altemative．If there is to be a model that can account for the large individual differences and for m inority responses then the equate－ to－differentiate model is a plausible candidate．

The present study suffers from some limitations First，the test－retest interval across certainty，uncer－ tainty and risk was varied from 39 to 79 days，which might cause some difficulty in comparing the variability of choices Second，only one choice problem was de－ signed and tested for each of these three domains It appears that a further study evaluating various choice problems in each decision domain might be worth－ while These features of the present study arouse some concems regarding the external validity of the findings

Acknowledgments

The author thanks the anonymous referee of this journal for his or her helpful comments on the initial version and detailed and careful checking of the resul－ ting data

References

1 Butler D J．Do non－expected utility choice patterns spring from hazy preferences？An expermental study of choice‘ errors＇．Journal of Econom ic Behavior and Organization，2000，41： 277 ～ 297

2 Luce R D，Suppes P．Preference，utility，and subjective probabili－ ty．In R．D．Luce，R．R．Bush，\＆E Galanter（Eds ），Hand－ book of mathematical p sychology（Vol．3）．New York：W iley， 1965
3 Tversky A．Elimination by aspects：A theory of choice Psychologi－ cal Review，1972，79： 281 ～299
4 Tversky A，Russo J E Substitutability and similarity in binary choice．Journal of Mathematical Psychology，1969，6： $1 \sim 12$
$5 \quad$ Li S Can the conditions governing the framing effect be determined？ Journal of Econom ic Psychology，1998，19： 133 ～ 153
6 Li S Extended research on dominance violations in smilarity judg－ ments：The equate－to－differentiate intepretation Korean Journal of Thinking and Problem Solving，2001，11： $13 \sim 38$
7 Li S Equate－to－differentiate：The role of shared and unique features in the judgment process Australian Joumal of Psychology，2001， 53： $109 \sim 118$

8 Li S A behavioral choice model when computational ability matters Applied Intelligence，2004，20： 147 ～ 163
9 Li S Equate－to－differentiate approach：An application in binary choice under uncertainty，Central European Journal of Operations Research，2004， 12 （3）： 269 ～294
10 Lee W．Decision theory and human behavior New York： W iley， 1971
11 von W interfeldt D，Edwards W．Decision Analysis and Behavioral Research Cambridge：Cambridge University Press， 1986
12 Fishburn P C．Lexicographic orders，utilities，and decision rules：A survey．Management Science，1974，20：1442～1471

13 Li S An alternative way of seeing the Allais－type violations of the sure－thing principle Humanomics，2004，20： 17 ～31

14 Li S，Fang Y，ZhangM．W hat makes frames work？Acta Psycholog－ ica Sinica，2000，32： 229 ～ 234
（李纾，房永青，张迅捷．再探框架对风险决策行为的影响．心理学报，2000，32：229～234）
15 Li S The role of expected value illustrated in decisionmaking under risk：single－p lay vs multip le－play．Journal of Risk Research，2003， 6： $113 \sim 124$
16 Li S Choice under uncertainty：Why it is easier for a camel to go through the eye of a needle than for a rich man to enter the kingdom of God Formosan Journal of Applied Psychology，2000，8：19～29
（李纾．不确定状态下决择：为什么说富人进天堂比骆驼穿过针眼还难。（台湾）应用心理学报，2000，8：19～29）
17 Leland J．Generalized smilarity judgments：An alternative explana－ tion for choice anomalies Joumal of Risk and Uncertainty，1994， 9： $151 \sim 172$

18 Kahneman D，Tversky A．Prospect theory：An analysis of decision
under risk Econometrica，1979，47：263～291
19 Li S What is wrong with Allais＇certainty effect？Joumal of Behav－ ioral Decision Making，1993，6：271～281
20 Li S Is there a decision weightா ？Journal of Econom ic Behavior and Organization，1995，27：453～463

确定，不确定及风险状态下选择反转：＂齐当别＂选择方式的解释

李 纾
（中国科学院心理研究所社会与经济行为研究中心，北京 100101）

摘 要 应用广义＂弱优势＂（weak dominance）模型检验确定，不确定及风险状态下的选择反转现象。该模型将人们的二择一选择行为描述为一种搜寻一备择方案在主观上优越于另一备择方案的过程。即：在甲方案在某一维度上优越于乙方案，而乙方案在另一维度上优越于甲方案的情况下，为了利用＂弱优势＂（weak dom inance）原则达成决策，人们必须在一维度上将两者间较小的差异人为地＂齐同＂掉，而在另一维度上将＂辨别＂两者间较大的差异作为最终选择的依据。因此，在每次选择时，如果不认为最大的差异都是来自同一维度，就会导致选择反转。此项研究设计了一＂匹配＂任务，并借此检验，在不同的决策状态下，判断两备择方案在各维度上的差异是否能预测人们的重复选择变异。总的测试－再测试结果支持＂齐当别＂选择方式的解释。其发现表明：重复选择之所以可能是一致的，并不是因为每次都认定被选中的备择方案具有最大值，而是因为每次选择都认定最大的差异来自一固定的维度。
关键词 重复选择，选择反转，弱优势原则。
分类号 B849：C934

[^0]: 收稿日期 ：2003－12－26
 Corresponding author：LI Shu，Email：lishu＠psych ac．cn；s li＠UNSW alumni com

[^1]: ＊The results reported by $\mathrm{Li}^{[16]}$ were that most of the Australian participants（ 71% ）avoided the uncertain option Coup led with this was the fact that most (90%) of those who preferred the sure gain chose the matched pair D ，＂a sure gain of $\$ 25$＂vs＂an unknown chance to gain nothing＂，as the most different one．An analysis reveals that matching significantly accounted for 42%（phi squared，$p<0.01$ ）of the choice variance in this choice p roblem．

[^2]: （1）This result was replicated with 32 student participants from the School of Psychology at the University of New South Wales（ $\varnothing=-0.41, p<0.02$ ）．
 （2）Alternative A in Choice 2，the sure thing option，can itself be seen as either the best possible outcome（when compared with the best possible outcome of the uncertain option）or the worst possible outcome（when compared with the worst possible outcome of the uncertain option）．Such a rep resentation and hence a manipulation of risky preference involving a sure thing option is empirically tested in Li＇s study（e g，Li ${ }^{[5,15,19,20]}$ ）．

