PSYCH OpenIR  > 脑与认知科学国家重点实验室
Singularly perturbed boundary value problems for a class of second order turning point on infinite interval
Lu, Hai-bo1; Ni, Ming-kang1,2; Wu, Li-meng1
2012-07-01
发表期刊ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES
ISSN0168-9673
文章类型Article
卷号28期号:3页码:485-494
摘要This article solved the asymptotic solution of a singularly perturbed boundary value problem with second order turning point, encountered in the dissipative equilibrium vector field of the coupled convection disturbance kinetic equations under the constrained filed and the gravity. Using the matching of asymptotic expansions, the formal asymptotic solution is constructed. By using the theory of differential inequality the uniform validity of the asymptotic expansion for the solution is proved.
关键词singular perturbation asymptotic expansion turning point infinite interval
收录类别SCI
语种英语
WOS记录号WOS:000305126700005
引用统计
文献类型期刊论文
条目标识符http://ir.psych.ac.cn/handle/311026/13420
专题脑与认知科学国家重点实验室
作者单位1.E China Normal Univ, Dept Math, Shanghai 200062, Peoples R China
2.Chinese Acad Sci, Inst Psychol, State Key Lab Brain & Cognit Sci, Beijing 100101, Peoples R China
推荐引用方式
GB/T 7714
Lu, Hai-bo,Ni, Ming-kang,Wu, Li-meng. Singularly perturbed boundary value problems for a class of second order turning point on infinite interval[J]. ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES,2012,28(3):485-494.
APA Lu, Hai-bo,Ni, Ming-kang,&Wu, Li-meng.(2012).Singularly perturbed boundary value problems for a class of second order turning point on infinite interval.ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES,28(3),485-494.
MLA Lu, Hai-bo,et al."Singularly perturbed boundary value problems for a class of second order turning point on infinite interval".ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES 28.3(2012):485-494.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Lu, Hai-bo]的文章
[Ni, Ming-kang]的文章
[Wu, Li-meng]的文章
百度学术
百度学术中相似的文章
[Lu, Hai-bo]的文章
[Ni, Ming-kang]的文章
[Wu, Li-meng]的文章
必应学术
必应学术中相似的文章
[Lu, Hai-bo]的文章
[Ni, Ming-kang]的文章
[Wu, Li-meng]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。