PSYCH OpenIR  > 脑与认知科学国家重点实验室
A General Exponential Framework for Dimensionality Reduction
Wang,Su-Jing1,2; Yan,Shuicheng3; Yang,Jian4; Zhou,Chun-Guang2; Fu,Xiaolan1
第一作者Wang, Su-Jing
通讯作者邮箱wangsujing@psych.ac.cn ; eleyans@nus.edu.sg ; csjyang@mail.njust.edu.cn ; cgzhou@jlu.edu.cn ; fuxl@psych.ac.cn
心理所单位排序1
摘要As a general framework, Laplacian embedding, based on a pairwise similarity matrix, infers low dimensional representations from high dimensional data. However, it generally suffers from three issues: 1) algorithmic performance is sensitive to the size of neighbors; 2) the algorithm encounters the well known small sample size (SSS) problem; and 3) the algorithm de-emphasizes small distance pairs. To address these issues, here we propose exponential embedding using matrix exponential and provide a general framework for dimensionality reduction. In the framework, the matrix exponential can be roughly interpreted by the random walk over the feature similarity matrix, and thus is more robust. The positive definite property of matrix exponential deals with the SSS problem. The behavior of the decay function of exponential embedding is more significant in emphasizing small distance pairs. Under this framework, we apply matrix exponential to extend many popular Laplacian embedding algorithms, e. g., locality preserving projections, unsupervised discriminant projections, and marginal fisher analysis. Experiments conducted on the synthesized data, UCI, and the Georgia Tech face database show that the proposed new framework can well address the issues mentioned above.
关键词Face recognition manifold learning matrix exponential Laplacian embedding dimensionality reduction
学科领域Computer Science, Artificial Intelligence ; Engineering, Electrical & Electronic
2014-02-01
语种英语
DOI10.1109/TIP.2013.2297020
发表期刊IEEE TRANSACTIONS ON IMAGE PROCESSING
ISSN1057-7149
卷号23期号:2页码:920-930
期刊论文类型Article
URL查看原文
收录类别SCI
WOS关键词LINEAR DISCRIMINANT-ANALYSIS ; PRESERVING PROJECTIONS ; FACE ; MATRIX ; EIGENFACES ; ALGORITHM ; COMPUTE
WOS研究方向Computer Science ; Engineering
WOS类目Computer Science, Artificial Intelligence ; Engineering, Electrical & Electronic
WOS记录号WOS:000329581800034
WOS分区Q1
引用统计
被引频次:59[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://ir.psych.ac.cn/handle/311026/14174
专题脑与认知科学国家重点实验室
作者单位1.Chinese Acad Sci, Inst Psychol, State Key Lab Brain & Cognit Sci, Beijing 100101, Peoples R China;
2.Jilin Univ, Coll Comp Sci & Technol, Changchun 130012, Peoples R China;
3.Natl Univ Singapore, Dept Elect & Comp Engn, Singapore 119077, Singapore;
4.Nanjing Univ Sci & Technol, Sch Comp Sci & Technol, Nanjing 210094, Jiangsu, Peoples R China
第一作者单位脑与认知科学国家重点实验室
推荐引用方式
GB/T 7714
Wang,Su-Jing,Yan,Shuicheng,Yang,Jian,et al. A General Exponential Framework for Dimensionality Reduction[J]. IEEE TRANSACTIONS ON IMAGE PROCESSING,2014,23(2):920-930.
APA Wang,Su-Jing,Yan,Shuicheng,Yang,Jian,Zhou,Chun-Guang,&Fu,Xiaolan.(2014).A General Exponential Framework for Dimensionality Reduction.IEEE TRANSACTIONS ON IMAGE PROCESSING,23(2),920-930.
MLA Wang,Su-Jing,et al."A General Exponential Framework for Dimensionality Reduction".IEEE TRANSACTIONS ON IMAGE PROCESSING 23.2(2014):920-930.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
WOS000329581800034.p(6755KB)期刊论文出版稿暂不开放CC BY-NC-SA请求全文
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Wang,Su-Jing]的文章
[Yan,Shuicheng]的文章
[Yang,Jian]的文章
百度学术
百度学术中相似的文章
[Wang,Su-Jing]的文章
[Yan,Shuicheng]的文章
[Yang,Jian]的文章
必应学术
必应学术中相似的文章
[Wang,Su-Jing]的文章
[Yan,Shuicheng]的文章
[Yang,Jian]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。