PSYCH OpenIR  > 脑与认知科学国家重点实验室
A global energy optimization framework for 2.1D sketch extraction from monocular images
Yu, Cheng-Chi1; Liu, Yong-Jin1; Wu, Matt Tianfu2; Li, Kai-Yun3; Fu, Xiaolan3
2014
发表期刊GRAPHICAL MODELS
ISSN1524-0703
文章类型Article
卷号76页码:507-521
摘要The 2.1D sketch is a layered image representation, which assigns a partial depth ordering of over-segmented regions in a monocular image. This paper presents a global optimization framework for inferring the 2.10 sketch from a monocular image. Our method only uses over-segmented image regions (i.e., superpixels) as input, without any information of objects in the image, since (1) segmenting objects in images is a difficult problem on its own and (2) the objective of our proposed method is to be generic as an initial module useful for downstream high-level vision tasks. This paper formulates the inference of the 2.1D sketch using a global energy optimization framework. The proposed energy function consists of two components: (1) one is defined based on the local partial ordering relations (i.e., figure-ground) between two adjacent over-segmented regions, which captures the marginal information of the global partial depth ordering and (2) the other is defined based on the same depth layer relations among all the over-segmented regions, which groups regions of the same object to account for the over-segmentation issues. A hybrid evolution algorithm is utilized to minimize the global energy function efficiently. In experiments, we evaluated our method on a test data set containing 100 diverse real images from Berkeley segmentation data set (BSDS500) with the annotated ground truth. Experimental results show that our method can infer the 2.10 sketch with high accuracy. (C) 2014 Elsevier Inc. All rights reserved.
关键词2.1D sketch Global optimization Local features Hybrid differential evolution
收录类别SCI
语种英语
WOS记录号WOS:000347018500042
引用统计
被引频次:13[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://ir.psych.ac.cn/handle/311026/14181
专题脑与认知科学国家重点实验室
作者单位1.Tsinghua Univ, Dept Comp Sci & Technol, TNList, Beijing 100084, Peoples R China
2.Univ Calif Los Angeles, Dept Stat, Ctr Vis Cognit Learning & Art, Los Angeles, CA 90024 USA
3.Chinese Acad Sci, Inst Psychol, State Key Lab Brain & Cognit Sci, Beijing 100101, Peoples R China
推荐引用方式
GB/T 7714
Yu, Cheng-Chi,Liu, Yong-Jin,Wu, Matt Tianfu,et al. A global energy optimization framework for 2.1D sketch extraction from monocular images[J]. GRAPHICAL MODELS,2014,76:507-521.
APA Yu, Cheng-Chi,Liu, Yong-Jin,Wu, Matt Tianfu,Li, Kai-Yun,&Fu, Xiaolan.(2014).A global energy optimization framework for 2.1D sketch extraction from monocular images.GRAPHICAL MODELS,76,507-521.
MLA Yu, Cheng-Chi,et al."A global energy optimization framework for 2.1D sketch extraction from monocular images".GRAPHICAL MODELS 76(2014):507-521.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
2014 A global energy(3948KB) 暂不开放--请求全文
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Yu, Cheng-Chi]的文章
[Liu, Yong-Jin]的文章
[Wu, Matt Tianfu]的文章
百度学术
百度学术中相似的文章
[Yu, Cheng-Chi]的文章
[Liu, Yong-Jin]的文章
[Wu, Matt Tianfu]的文章
必应学术
必应学术中相似的文章
[Yu, Cheng-Chi]的文章
[Liu, Yong-Jin]的文章
[Wu, Matt Tianfu]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。